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Chapter 1

The Basic Two-Period Model

This chapter introduces the basic model we apply to study fiscal policy in this course. It is a
dynamic and microfounded model. "Dynamic" means we model time - the model contains two
periods. "Microfounded" means we carefully describe the microeconomic environment agents are
inserted in. Parts of this environment are: resource constraints, market structure, and agents’
preferences, budget constraints, and optimal choices. While stylized, the basic model of this chapter
introduces key concepts, such as Ricardian Equivalence, the Euler Equation, and a competitive
equilibrium. Subsequent chapters use and build on the environment and these key concepts of the
basic model.

1.1. Environment
The economy is populated by households and a government. They live for two periods, t = 0 and
t = 1, and trade identical consumption goods and public bonds. Public bonds promise their holder
one unit of the consumption good in the following period. There is no money in this economy.
Agents trade public bonds using consumption goods.

A word on notation: each variable in the model takes a value in period zero and a value in
period one, as indicated by their subscript. For example: x0 and x1. A process that is a function of
time is called a time series. When a symbol omits the subscript, it refers to the entire time series
vector: x = (x0, x1).

1.1.1. The Government

The government demands g = (g0, g1) consumption goods (i.e., g0 in period zero and g1 in period
one). To finance its purchases, it charges lump-sum taxes τ = (τ0, τ1) on households. Households
cannot avoid paying taxes. The pair g and τ characterize fiscal policy in this model.

The government also raises revenue from selling new public bonds. In period zero, the price of
one bond is q0 units of the consumption good. Usually q0 < 1: you pay less than one good in t = 0,
to get one good in t = 1. As such,

1 + r0 = 1
q0
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is the interest rate implied by the public bond’s price. In period one, agents have no incentive to
save since the world ends in the following period. Since bonds have no demand, we can set its
equilibrium price to zero: q1 = 0.

We make two critical assumptions on government behavior. First, it can credibly commit to
fully repaying previously issued debt. "Credibly" means that households believe in its commitment,
and act accordingly. Second, the government indeed never defaults.

The government brings to period zero a debt of b−1 bonds, and must therefore come up with
b−1 consumption goods to pay bondholders. To that end, it can either sell new bonds b0 and raise
q0b0 goods in revenue, or run a primary surplus. The primary surplus is defined as the difference
between tax proceeds and non-interest spending. In this model, it corresponds to the quantity
τ0 − g0. The government avoids a default in period zero if

q0b0 + τ0 − g0 = b−1. (1.1)

The revenue from selling new bonds plus the revenue from taxes in excess of public spending must
be enough to redeem old bonds. Since the government will not default, condition (1.1) represents a
budget constraint. It restricts the government’s choice of how much to tax, how much to spend,
and how much to borrow.

Like in period zero, in period one the government again must pay bondholders, which are now
due b0 units of the consumption good. But, in period one, the government cannot sell new bonds,
since there is no demand for them (the bond price is zero q1 = 0, so the government would not
raise any revenues anyway). Therefore, to pay bondholders, the government must run a primary
surplus of b0 in period one:

τ1 − g1 = b0. (1.2)

Expression (1.2) is also a government budget constraint.

1.1.2. Households

The consumption good is non-durable (households can only enjoy them for a single period), and
perishable (agents cannot store them). Households value the consumption good in the period they
make use of them. The utility function

u(c0) + βu(c1)

captures households’ preferences over the amount consumed in period zero c0 and period one c1.
Period utility u(c) is an increasing, strictly concave and twice differentiable function. Parameter
β ∈ (0, 1] discounts the flow of future consumption, and therefore captures households’ impatience.

Each household receives an endowment of y = (y0, y1) consumption goods. You can think of
households producing these goods at home; we later model firms, production and labor income
more realistically.

We normalize the number of households to one, which avoids the introduction of unnecessary
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notation. If each household consumes c0 goods, aggregate consumption will be

c0 × Number of Households = c0 × 1 = c0.

The same symbol c0 represents both individual and aggregate consumption. Likewise, (y0, y1)
represent aggregate production in the economy.

In period zero, each household brings a−1 public bonds purchased in the previous period. Since
households and the government are the only agents in the model, we restrict the number of bonds
initially owned by households to coincide with the number of bonds owed by the government:
a−1 = b−1. Households redeem these a−1 bonds for the same number of consumption goods. Add to
that their after-tax income y0 − τ0 and we find the amount of available goods to each household in
period zero. They can use these goods to consume or purchase public bonds from the government.
Let a0 be the household’s choice of how many public bonds to purchase. There is no other asset
in the economy, so a0 also represents the household’s savings and its net wealth. The following
equation is the budget constraint faced by each household in period zero:

q0a0 + c0 ≤ a−1 + y0 − τ0. (1.3)

Equation (1.3) restricts the households’ decision of how much to consume and how much to save
in period zero. In period one, households redeem a0 public bonds, and do not demand new ones, as
the world ends thereafter. Hence:

c1 ≤ a0 + y1 − τ1. (1.4)

Households can borrow too, and the government can lend. While we have referred to b0 as
government "borrowing" and a0 as household "savings", nothing precludes these variables from
being negative (in which case, the household borrows and the government lends).

Suppose households exhaust their available resources, that is, that their budget constraints
hold with equality. By equation (1.4), the maximum amount of goods a household can repay from
previously acquired debt is y1− τ1 (in that case, the household would consume zero goods in period
one, c1 = 0). If the household’s debt is larger than y1 − τ1, the household defaults. Knowing that,
potential lenders (other households or the government) refuse to purchase bonds from (i.e., lend
to) a household whose debt exceeds this value. Therefore, the largest debt any household can owe
is y1 − τ1. We incorporate this borrowing constraint in the model by establishing a lower bound a
on period-zero savings a0:

a0 ≥ a = −(y1 − τ1). (1.5)

(If you get confused with signs, think of an example; if after-tax income equals 5 goods, then debt
cannot be higher than 5, so net wealth cannot be lower than a = −5.)

Economists often refer to a household’s maximum repayable debt as its natural borrowing limit.
In our model, the natural borrowing limit is −a = y1 − τ1. Other choices of borrowing limit −a are
possible, and often more realistic. However, adopting the natural borrowing limit is a convenient
starting point to analyze households’ allocation decisions, because any choice that involves positive
consumption in period one (c1 > 0) necessarily satisfies it. Consequently, if we prove that period-one
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consumption is not zero, we can safely ignore the borrowing limit.
Households decide how much to consume c = (c0, c1) and how many bonds to purchase (or

issue) a0 taking into account their budget and borrowing constraints (1.3)-(1.5). They take the
price of public bonds q0 as given (i.e., they act competitively), and attempt to get as much utility
as possible from their choice. Therefore, the choice of how much to consume and save solves the
following utility maximization problem:

Max
c≥0,a0

u(c0) + βu(c1) (1.6)

s.t. q0a0 + c0 ≤ a−1 + y0 − τ0 (1.3)
c1 ≤ a0 + y1 − τ1 (1.4)
a0 ≥ a. (1.5)

Optimization problems similar to (1.6) are often referred to as consumption-savings problems.
Since u is an increasing, strictly concave function, optimization (1.6) has a single solution.1

In that solution, budget constraints (1.3) and (1.4) hold with equality - otherwise households
could raise consumption and get more utility. Let c(a−1; q0, τ) and a0(a−1; q0, τ) be the pair of
consumption levels (c0, c1) and public bond purchases that solve (1.6). The arguments underscore
how households’ choices depend on their initial net wealth, the price of public bonds and taxes.

1.2. Present-Value Budget Constraints

1.2.1. Government and Fiscal Policy Sustainability

Let us return to the government’s budget constraints, repeated below for convenience:

q0b0 + s0 = b−1 (1.1)
s1 = b0. (1.2)

(s = τ − g is the primary surplus sequence). Equations (1.1) and (1.2) are examples of sequential
budget constraints ("sequential" because we have one of them in each period).

Sequential budget constraints focus on the interaction between surpluses and wealth. But they
also indirectly capture the possibilities of intertemporal allocation available to the government. For
example: if it wants to lower period-zero surpluses by one (∆s0 = −1, ∆ means "a change in"),
it must issue the necessary volume of new bonds ∆b0 = 1/q0 = 1 + r0; and then raise period-one
surpluses by ∆s1 = ∆b0 = 1/q0 to pay the additional debt.

It is often useful to represent the restrictions involving current and future surpluses more
directly, with a single expression. Replace (1.2) on (1.1) to get:

b−1 = s0 + q0s1. (1.7)
1We assume income y and initial wealth b−1 are large enough so that the household can choose non-negative

amounts of consumption goods.
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Equation (1.7) is the government’s present-value budget constraint. It immediately shows that
∆s0 = −1 demands ∆s1 = 1/q0.

We say "present-value" because we are converting spending in different points in time to their
corresponding value in period zero. Indeed, the value in t = 0 of the delivery of X goods in t = 1 is
q0X, since any agent can purchase X bonds for that amount, and get the X goods in t = 1.1 In
that sense, we can regard q0 not only as the price of public bonds, but also the price of period-one
consumption c1 relative to period-zero consumption c0.

We say "budget constraint" because expression (1.7) is a sufficient and necessary condition to
ensure that the government does not default. Conveniently, it does not depend on the b0 term, only
on fiscal policy objects τ and g through the surplus terms s = τ −g. In that sense, the present-value
budget constraint implies and is implied by fiscal policy sustainability.

Let us check this important claim. If the government does not default, then s and b0 must
respect the sequential budget constraints (1.1) and (1.2). Together, they imply (1.7). Thus, no
default =⇒ the present-value budget constraint.

In the opposite direction, suppose we have a surplus process s = (s0, s1) that satisfies (1.7). We
use the period-zero sequential budget constraint (1.1) to find the necessary volume of bonds the
government needs to issue:

b0 = b−1 − s0

q0
.

The above b0 ensures that the government does not default in period zero. Does it default in period
one? By assumption, the surplus pair satisfies (1.7). So:

b−1 = s0 + q0s1 =⇒ s1 = b−1 − s0

q0
= b0.

Since s1 = b0, period-one sequential budget constraint (1.2) holds. In conclusion, validity of the
present-value budget constraint =⇒ no government default.

1.2.2. Re-Stating Households’ Consumption-Savings Problem

Consider now the sequential budget constraints faced by households, expressions (1.3) and (1.4).
The conclusions we find above for the government apply somewhat similarly. The sequential budget
constraints imply the present-value budget constraint:

a−1 ≥ [c0 − (y0 − τ0)] + q0 [c1 − (y1 − τ1)] . (1.8)

Each term in brackets represents the household’s expenditure in excess of its after-tax income
(you can think of it as the household’s own "primary deficit"). The present value of its excess
consumption must be lower or equal to the initial wealth a−1. Intuitively, if its exceeds a−1, then
households default in period one.

Like in the government’s case, a consumption process c = (c0, c1) that satisfies the present-value
1This is a no-arbitrage argument: If the value was A > q0X, you could sell the period-one delivery of X goods

for A and purchase the required bonds for q0X to make a something-for-nothing profit.
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budget constraint (1.8) also satisfies the sequential budget constraints, if we choose the right net
wealth a0. For instance, we can use period-one budget constraint, expressed with equality:

a0 = c1 − (y1 − τ1) . (1.9)

The equivalency between restricting households’ consumption choice using sequential or present-
value budget constraints opens the door to writing the consumption-savings problem (1.6) in terms
of the c only:

Max
c≥0

u(c0) + βu(c1) (1.10)

s.t. a−1 ≥ [c0 − (y0 − τ0)] + q0 [c1 − (y1 − τ1)] (1.8)
(a0 =) c1 − (y1 − τ1) ≥ a. (1.5)

(We have used (1.9) to replace a0 in the borrowing constraint.1) The solution c(a−1; q0, τ) to problem
(1.6) also solves problem (1.10). We can then use (1.9) again to recover the optimal demand for
public bonds a0(a−1; q0, τ).

1.3. Ricardian Equivalence
In general terms, Ricardian equivalence is the proposition that households’ consumption choices
are unaffected by the timing of taxation. In this section, we model Ricardian equivalency in
our two-period setup and discuss which conditions are key to make it hold. We start with a
government that fixes a fiscal policy pair g and τ = (τ0, τ1). Fiscal policy is sustainable, therefore
the present-value budget constraint (1.7) is satisfied. We can write it as:

[τ0 + q0τ1] = b−1 + [g0 + q0g1] . (1.11)

On the left, the present value of tax proceeds; on the right, the present value of outlays divided
between spending and old debt redemption. Households observe the path of due taxes, and plan
how much to consume c(τ) and how much to save a0(τ).2

Suppose that, still at the beginning of period zero, the government announces a different, but
still sustainable, path to lump-sum taxes, τ̂ = (τ̂0, τ̂1). Spending g remains unaltered. How do
households revise their consumption plans in response to the government announcement? It turns
out that, in the conditions of our two-period model, they don’t: c(τ) = c(τ̂). We say that Ricardian
equivalence holds.

The key to prove the proposition is to show that different but equally sustainable taxation
paths do not change the set of consumption levels affordable by households. Formally, any c that
satisfies the constraints of the consumption-savings problem (1.10) under τ will continue to satisfy
them under τ̂ , and vice-versa.

1(1.9) is the only level of bond purchases consistent with a consumption choice because the sequential budget
constraints hold with equality in the solution of (1.6).

2In this section only, I ignore the arguments a−1 and q0 of the optimal solutions for brevity.
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Let’s check that claim. We start with the present-value budget constraint (1.8), which holds
with equality. We can re-write it as:

[c0 + q0c1] + [τ0 + q0τ1]− [y0 + q0y1] = a−1.

The middle term on the left-hand side is the present value of charged taxes. Since both τ and τ̂
are fiscally sustainable, and since g is unchanged, that quantity must stay constant:

[τ0 + q0τ1] = [τ̂0 + q0τ̂1] = b−1 + [g0 + q0g1] .

Therefore, the household’s present-value budget constraint is unchanged.
Next, consider the borrowing constraint (1.5). Since we use the natural borrowing limit, they

read:

c1 − (y1 − τ1) = a0 ≥ a = −(y1 − τ1)
c1 − (y1 − τ̂1) = a0 ≥ a = −(y1 − τ̂1)

Both restrictions above are satisfied whenever c1 ≥ 0 (this is how we define the natural borrowing
limit!). Hence, the borrowing limit is effectively unchanged.

Since the restrictions of the consumption-savings problem (1.10) remain the same, the optimal
level of consumption cannot be different. In conclusion, c(τ) = c(τ̂).

1.3.1. Interpretation

The central idea behind Ricardian equivalence is the fact that households understand how a
one-dollar reduction in charged taxes today (or a standalone one-dollar transfer) must be followed
by a one-dollar increase plus interest tomorrow (and vice versa). Being the household, you can save
the extra dollar, earn the interest, and duly pay the higher tax tomorrow. No reason to change
the groceries list. In that sense, critics of transfer-based programs of fiscal "stimulus" often rely on
the Ricardian equivalence result as a theoretical basis for their skepticism. Still, it is critical to
understand what the proposition says and what it doesn’t.

One could precisely summarize what Ricardian equivalence does say as follows:
Household’s consumption demand curve does not depend on the timing of lump-sum taxes.

The two emphasized terms are key. "Timing" means when, not how much. Ricardian equivalence
does not say that households do not respond to different taxation schemes. If the government
halves taxes today but promises the same level of taxation in the future, households do use the
additional resources to raise consumption. If the government announces higher taxes tomorrow, but
no transfers today, then households save some more. (Note however that the government exhausts
its resources; thus an increase in overall taxes for instance must lead to an increase in spending g
too. See (1.11).) "Lump-sum" means that the proposition excludes taxes that depend on households’
actions, like income, consumption and corporate taxes. Unlike these alternative forms of taxation,
lump-sum taxes do not change the marginal benefits of these actions; hence, they do not induce
changes in household behavior other than because they get wealthier or poorer.
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1.3.2. Critical Assumptions

According to the Ricardian proposition, demand for consumption goods c(τ) is unresponsive to the
timing of taxes, but not the demand for bonds a0(τ). If the government sends you a 100-dollar
check and you do not spend it, your savings account grows by 100 dollars. If the government
charges you an additional 100 dollars in taxes, your savings account diminishes by that amount.
One critical assumption behind Ricardian equivalence is that, if necessary, households dispose of
the necessary credit to sustain their period-zero consumption level. This has been a given in our
baseline case of the two-period model: under the natural borrowing limit (1.5), households can
always borrow if they can repay. If the government charges 100 dollars more in taxes in t = 0,
households can borrow an additional 100 dollars (plus interest) as lenders understand taxes will be
lower by that amount in t = 1. The natural borrowing limit will not bind under the new path of
taxes if it didn’t under the old one.

However, more restrictive borrowing constraints can bind and thus prevent households from
keeping their consumption path unaltered. For instance, a commonly used restriction is the no-
borrowing constraint a = 0. In our model, when the borrowing constraint binds, period-zero
consumption is given by equation (1.9):

c0 = a−1 − q0a+ y0 − τ0

Hence, if a fiscal policy change ∆τ is small enough so that the borrowing constraint continues to
bind, ∆c0 = ∆τ0. In the presence of a binding borrowing constraint, an increase in taxation leads to
a reduction in current consumption since households cannot issue more debt to pay for the higher
taxes. On the opposite direction, lower taxes (or standalone transfers) might raise consumption.
As such, discussions of whether adjustments to fiscal policy will stumble on Ricardian behavior
often center around the extent to which households are credit constrained. Obviously, one can only
answer that question empirically, on a case-by-case basis.

Also key for Ricardian equivalence to hold is the functioning of public finances, in particular
the assumption that fiscal policy is credible and sustainable. In the context of real debt (i.e.,
public bonds that pay a consumption good), fiscal sustainability is the same as no default. Our
model captures best a government that is fully credible to raise enough revenue to eventually
repay its debts (e.g. Switzerland). Deficits today lead to surpluses tomorrow. In practice, however,
governments do default. Even if they don’t, households might believe that they can. The credible
communication of a fiscal policy plan is just as important to household behavior as the policy path
itself. Whenever the government lacks the credibility of debt repayment, lower taxes today do not
imply higher taxes tomorrow. Ricardian equivalence fails.

It is easy to take the assumptions of fiscal credibility and sustainability for granted, especially
because most modern governments finance themselves primarily through nominal, not real debt.
Agents redeem nominal debt for money, which is, in most cases, created by the government. Hence,
unsustainable fiscal policy paths do not necessarily lead to the dramatic outcome of a government
default, but rather to a decline in the value of money (inflation). We come back to that topic later.
For now, just note that it is not clear how frequently and to which extent governments can and
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do promise fully sustainable changes in fiscal policy; and that our use of the expression "fiscal
sustainability" in this section is more restrictive than the government not defaulting in practice.

Lastly, contrary to our model’s assumptions, households are not identical, and tax and transfers
are seldom unconditional. The more realistic income, capital and consumption taxes are a sure way
to break Ricardian equivalence. Moreover, households with different characteristics are likely to
react differently to a change in fiscal policy. We have discussed above the case of credit-constrained
households. One might conjecture that older individuals will not be as inclined to save a public
transfer in order to pay for a future increase in taxation. Perhaps the same applies to unemployed
workers. In all, the lack of household heterogeneity is a major simplification imposed by our model.

1.4. Intertemporal Choice and Equilibrium
We want to characterize the competitive equilibrium of our two-period economy. The competitive
equilibrium is defined by market prices and quantities that cover two properties. First, agents
choose the quantities optimally, taking prices as given. The "taking prices as given" part makes
the equilibrium "competitive". Second: all markets clear, which means that quantities optimally
supplied equal quantities optimally demanded.

When computing an equilibrium, we fix fiscal policy (g, τ). We will later study how the
government can choose fiscal policy to generate the "best" equilibrium possible. For now, we take g
and τ as given, assuming that they respect the present-value budget constraint (1.7).

1.4.1. Household Optimality

Consider households’ optimal choices, c(a−1; q0, τ) and a0(a−1; q0, τ). Because they solve the
consumption-savings problem (1.6) (or (1.10)), they must satisfy the first-order optimality condition
associated with that problem. In an interior solution (i.e., in a solution with c0 > 0, c1 > 0), that
condition is the Euler equation

q0u
′(c0) = βu′(c1). (1.12)

We interpret the Euler equation (1.12) as a condition of consumption smoothing. Since the utility
function u is increasing and concave, marginal utility u′ is a positive, but decreasing function.1
Intuitively, consuming more always makes the household "happier", but the amount of extra
"happiness" an additional unit of consumption provides declines as it consumes more. Equating
marginal utility therefore means balancing value over time. If you are lost in the desert, do not
empty the waterskin on the first night.

To prove (1.12) is the first-order condition for optimality, consider the following variational
argument. The utility gain of marginally increasing period-one consumption by ∆c1 is βu′(c1)∆c1.
According to the present-value budget constraint (1.8), to increase period-one consumption by ∆c1,

1Technically, marginal utility could be zero even though utility is increasing. Here, I am assuming u′ > 0.
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the household must give up ∆c0 = −q0∆c1 units of period-zero consumption.

a−1 = [c0 − (y0 − τ0)] + q0 [c1 − (y1 − τ1)]
∆a−1 = ∆ [c0 − (y0 − τ0)] + q0 ∆ [c1 − (y1 − τ1)]

0 = ∆c0 + q0∆c1

The utility loss of reducing period-zero consumption is

u′(c0)∆c0 = −q0u
′(c0)∆c1.

For a choice of c to be optimal, the marginal gain cannot be lower or higher than the marginal loss.
Thus, q0u

′(c0)∆c1 = βu′(c1)∆c1, as we wanted to show.
The Euler equation (1.12) establishes a positive relationship between period-zero and period-one

consumption.
c0 ↑ =⇒ u′(c0) ↓ =⇒ u′(c1) ↓ =⇒ c1 ↑

To find the actual solution c(a−1; q0, τ) to the consumption-savings problem, we impose the fact
that the present-value budget constraint must hold with equality. We find the pair (c0, c1) that
satisfies the Euler equation and that guarantees that households exhaust their available resources.
Lastly, we can compute the optimal choice of period-zero savings a0(a−1; q0, τ) using the sequential
budget constraint (1.9).

1.4.2. The Competitive Equilibrium

In equilibrium, prices adjust so that markets clear. In the consumption goods market, the inelastically
supplied quantity of goods y coincides with the government’s demand g and households’ optimal
demand c(b−1; q0, τ):

c0(b−1; q0, τ) + g0 = y0 (1.13)
c1(b−1; q0, τ) + g1 = y1. (1.14)

(Recall a−1 = b−1.) In the bonds market, the volume issued by the government coincides with that
demanded by households:

a0(b−1; q0, τ) = b0. (1.15)

We now show that if one of these markets clears, the other two will clear as well. First, if
the bonds market clears, the market for period-one consumption will also clear. Indeed, from the
sequential budget constraints (1.2) and (1.4):

c1 + τ1 − y1 = a0 = b0 = τ1 − g1.

The terms on the left and right imply (1.14).
Second, if the market for consumption goods clears in period zero, the market for bonds will

also clear. We again see this from the sequential budget constraints (1.1) and (1.3). Subtracting

10



the former from the latter:

q0 (a0 − b0)︸ ︷︷ ︸
Excess Demand
Bond Market

+ c0 + g0 − y0︸ ︷︷ ︸
Excess Demand
Goods Market

= a−1 − b−1 = 0.

If the excess demand for goods is zero (i.e., if demand = supply), the expression above implies
a0 = b0.

The fact that we only need to clear one market is an application of Walras’ Law, which states
that, in an N -market economy, clearing of the first N − 1 markets implies the clearing of the last
one. Although we have three markets in our model, by now you should be convinced that the
market for public bonds is really a market for period-one consumption goods. (This is the rationale
behind the present-value budget constraints (1.7) and (1.8); they focus on consumption goods
only).

It is convenient that we only need to clear one market, since the only price in the model is the
price of public bonds q0 (obviously this is not a coincidence). To find the equilibrium value of q0,
replace (1.13) and (1.14) in the Euler equation:

q0(y, g) = 1
1 + r0(y, g) = β

u′(y1 − g1)
u′(y0 − g0) . (1.16)

Intuitively, equilibrium bond price q0(y, g) must provide households the due incentive to allocate
consumption intertemporally in a way consistent with the availability of goods. For example, suppose
that period-zero endowment y0 is much lower than period one’s y1. Under which circumstances
would households accept to consume so much more in t = 1 than in t = 0 (so that u′(c1)/u′(c0) is
low)? According to the Euler equation: when bond prices are too low, or interest rates too high.

The equilibrium bond price (1.16) amplifies the scope of Ricardian equivalence. In the previous
section, we saw that households’ demand curve for goods are unresponsive to the timing of fiscally
sustainable taxes. But demand curves are not the same as quantities demanded in equilibrium. In
principle, the latter could change if bond prices were sensitive to taxes. Expression (1.16) proves
this is not the case.

1.4.3. The Fiscal Multiplier

Given a change in public spending ∆g0, economists are often interested in the resulting change
in aggregate output ∆y0. The change in aggregate output per unit of public spending ∆y0/∆g0

is called the fiscal multiplier. In the simplified model we study in the section, aggregate output
y0 is exogenous, and unaffected by public spending. The fiscal multiplier is zero. In the following
chapters we examine models that assume more elaborate production technologies and therefore
allow for non-zero fiscal multipliers.

For now, a few aspects of the fiscal multiplier concept are worth noting. First, economists
often limit the definition of fiscal multipliers to exogenous changes in public spending. "Exogenous"
means that the change does not arise as a feedback response to other variables, but rather as a
change in the level of spending given other variables.
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There is no single fiscal multiplier. Even if we restrict the definition of a fiscal multiplier to
encompass exogenous variations in public spending, several factors can influence their effect on
the economy. Each possibility leads to a different multiplier. Here are a few examples: is the fiscal
shock anticipated? Is it long-lasting? Does the government demand consumption or investment
goods? We explore some of these cases in the following chapters.

Lastly, the fiscal multiplier is dual to the crowding-out effect of public spending. That is, the
more output grows in response to an increase in public spending, the less private consumption
needs to decline. You can see this from the market-clearing condition in the goods market (1.13):

∆c0

∆g0
= ∆y0

∆g0
− 1

When the fiscal multiplier is zero, each additional good purchased by the government reduces
private aggregate demand by the same amount. (In this chapter’s model we only consider private
consumption; we later consider private investment as well.) Based on this idea, economists sometimes
claim that expansion of public spending when the economy has no spare capacity (or "slack") is
detrimental to households.

Exercises
Exercise 1.1. We study the isoelastic utility function

u(c) = c1− 1
γ − 1

1− 1
γ

γ > 0. (1.17)

(a) Apply L’Hôpital’s rule to show that when γ → 1, the utility function converges to log(c).

(b) Express the Euler equation (1.12) as

c1

c0
= [β(1 + r0)]γ .

The left-hand side is the gross rate of consumption growth 1 + gc1. Use the first-order Taylor
approximation of the log function

log(1 + x) ≈ x when x ≈ 0

to conclude that
γ [log β + r0] = gc1.

The equation above show that parameter γ governs the elasticity of intertemporal substitution,
defined by ∆gc1/∆r0.

(c) Explain intuitively why the interest rate is increasing in consumption growth.
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Exercise 1.2. This exercise guides you through the complete solution of the consumption-
savings problem (1.6), under the isoelastic utility function (1.17) and a general borrowing limit a
(i.e.we no longer assume the natural borrowing limit −(y1 − τ1)).

(a) Suppose the household has enough wealth a−1 to support positive consumption in period
zero. Why can we guarantee positive consumption in both periods? Hint: consider the marginal
utility of consumption as it approaches zero.

(b) Set up the Lagrangian of the optimization problem (1.6). Compute the first-order conditions
to conclude that

q0u
′(c0) ≥ βu′(c1) (= if a0 > a).

(c) Start by assuming that the borrowing constraint a0 ≥ a does not bind. Use the Euler
equation to express c1 as a function of c0; replace that expression on the present-value budget
constraint to find solutions to c0 and c1, when the borrowing constraint does not bind.

(d) Replace your solution for c0 in the period-zero sequential budget constraint (1.3) to find
the required public bond position a0. Does it satisfy the borrowing constraint? If it does, we are
done. If it does not, then the borrowing solution binds.

(e) Use the sequential borrowing constraints to find c0 and c1 when the borrowing constraint
binds.

Exercise 1.3. In this exercise we study the government’s present-value budget constraint in a
model with T periods.

(a) Suppose the sequential budget constraint

qtbt + st = b− t− 1

holds. Show that present-value budget constraint

bt−1 =
T∑
j=t

qt,j−1sj

holds, where qt,j = ∏j
i=t qi. How do you interpret qt,j? What limit condition analogous to b1 = 0 in

the two-period model is necessary?

(b) Show that, if the present-value budget constraint holds in every period, the sequential
budget constraint holds as well (i.e., the government never defaults).

Exercise 1.4. Prove Walras’ Law (equilibrium in the goods market in period zero implies
equilibrium in period one) using the two present-value budget constraints (1.7) and (1.8). Assume
q0 > 0.

Exercise 1.5. In this example, the government does not demand final goods g = 0 and enters
period zero with no debt b−1 = 0. Households’ endowment is y0 = 5, y1 = 10, the utility function is
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u(c) = log(c) and β = 1. The government transfers one consumption good to household in period
zero, τ0 = −1.

(a) Find the equilibrium price of bonds and interest rate.

(b) Find the equilibrium consumption in both periods.

(c) What is the fiscally sustainable level of public transfer in period one?

(d) Compute households’ savings a0 at the end of period zero; and verify it is enough to finance
their consumption and taxes in the following period.

(e) Consider a different fiscal policy. Instead of a one consumption good transfer, suppose the
government enacts a one-period tax τ0 = 1. How do you change your answers to (a), (b), (c) and
(d)?

(f) Consider now the existence of a no-borrowing constraint. A no-borrowing constraint is a
borrowing constraint involving a zero debt limit: −a = 0. That is, we change equation (1.5) to
a0 ≥ 0. Consider again the fiscal policy change in τ you found in item (e). At the same bond
price as item (a), can the household keep its consumption process unchanged? Does Ricardian
equivalence hold?

(g) Under the no-borrowing constraint, is it possible to find an equilibrium with positive bond
prices q0 > 0 and period-zero positive taxes τ0 > 0?

Exercise 1.6. The economy is populated by a unit measure of identical households, subject
to the natural borrowing limit. The government announces a new period-zero transfer of one
consumption good, but only to half the population. It credibly commits to increase taxation in
period one, so that the new fiscal policy remains sustainable. Based on that information, can you
say that Ricardian equivalence continues to hold for sure? Can you say that it breaks? Explain.

Exercise 1.7. The government adopts a feedback rule to public spending:

g0 = θy0 + e0,

where θ is a model parameter and e0 is exogenously determined.

(a) Compute equilibrium output as a function of aggregate consumption c0 and the shock e0.

(b) Suppose θ > 0. For an exogenous reason, aggregate output grows by ∆c0. Compute ∆y0/∆g0.
Your favorite financial media commentator measures ∆y0/∆g0 > 0 and, based on his findings,
argues that in the future the government should raise public spending in times of low output. Does
the model support the commentator’s claim?

Exercise 1.8. Consider a two-period economy (t = 0, 1) in which a unity continuum of identical
households receive an endowment of one consumption good in each period, and have a utility of
√
c0 +√c1. Each household enters period zero with one unit of public bonds and trade new bonds

at a price q0. The government demands g0 = 0.25, g1 = 0.5 goods, and uses a flat, marginal tax rate
on households’ income to finance its purchases and repay public debt. The government credibly
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commits not to default. Write down the government’s present-value budget constraint, and set the
households consumption-savings problem.

(a) Write the Euler equation.

(b) (Let ∆ denote change from the original equilibrium.) A newly elected government decides to
decrease taxation by 1% in period one. If public spending remains unchanged, how should taxation
in the period zero change? What about private consumption?
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Chapter 2

Production and Marginal Taxation

This chapter extends the two-period model of chapter 1 to include endogenous production and
marginal taxation. We add two new goods: labor hours and physical capital, both of which are
supplied by households. A representative firm demands them to produce and supply consumption
goods. The government can now promote marginal taxation, which, unlike lump-sum taxes, are
distortionary and therefore break Ricardian equivalence. Characterization of the competitive
equilibrium leads to new insights related to fiscal policy choices.

2.1. Environment

2.1.1. Production

We add new ingredients to the basic model of chapter 1. We still work with two periods. There are
still households, a government, consumption goods and public bonds. To that structure we add
two new commodities, physical capital and labor hours, and a new agent, the representative firm.
These additional elements allow us to make production endogenous in the model, as opposed to the
exogenous endowments of chapter 1.

Letter n denotes labor hours. Each household has one unit of labor hour per period. Therefore,
n ∈ [0, 1]. Whenever the household is not working, it devotes the remaining 1− n hours to leisure,
which provides utility. As an alternative interpretation, you can think of n as the share of available
hours devoted to labor in a given period. The household’s utility function is

u(c0) + v(1− n0) + β [u(c1) + v(1− n1)] .

We often think of leisure 1− n as a good the household values - a good acquirable by not working
and forgoing labor income.

Letter k refers to capital (I omit "physical" unless necessary). Capital is a commodity that,
unlike consumption goods, is not perishable between periods. A household that goes to sleep with
k units of capital in t = 0 wakes up with the same k units in t = 1. To build capital, households
use consumption goods. One unit of consumption good gives one unit of capital in the following
period, which makes capital investment an intertemporal decision. The time notation is: kt−1 is the
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value of capital brought from period t− 1, which can be used in period t; kt is the choice made in
period t of how much capital to carry on to period t+ 1. Any consumption good applied to capital
building cannot be consumed. In the opposite direction, households can reduce next-period capital
by one to secure one additional consumption good.

Consumption goods must be produced using capital and labor, which are, therefore, production
factors. There are no endowments or home production. Each unit of capital applied to the production
of consumption goods depreciates at a rate δ ∈ [0, 1]. Labor hours do not depreciate. The production
function f(k, n) specifies how many consumption goods are produced be the pair (k, n). Function
f is an increasing, strictly concave and twice differentiable function. Moreover, it is homogeneous
of degree one: f(αx) = αf(x), which means that scaling production factors scales production itself
at the same rate (economists call that property constant returns to scale). Lastly, f(0, 0) = 0.

Households are identical and, in equilibrium, choose the same level of capital kt and labor hours
nt. Since there is a continuum of households, kt and nt also denote aggregate capital and labor
hours. Let yt = f(kt−1, nt) be aggregate output of the economy. The aggregate resource constraint
is

yt = ct + gt + kt − (1− δ)kt−1 t = 0, 1 (2.1)

where ct and gt again represent private consumption and public spending. The new term kt − (1−
δ)kt−1 is the aggregate investment of the economy which, as described above, costs consumption
goods on a one-to-one rate.

2.1.2. Markets and taxation

Households lend each unit of capital for rt+ δ, which makes 1+ rt the return on capital investments,
before taxes. Besides purchasing physical capital, they can also buy public bonds b, at a price qt.
Capital returns (rt for physical capital, 1/qt− 1 for bonds) are subject to a marginal tax at the rate
τk,t. (In the case of capital investments, the depreciation rate δ is tax deductible.) The payoffs of
investing in physical capital and public bonds are known ahead of time. If the returns of these two
assets were any different, households could short-sell the one asset with low return and purchase
the one with higher return to obtain more consumption goods. This arbitrage opportunity cannot
arise in equilibrium, as households would demand and supply an infinite amount of assets. Thus,
returns on capital and bond investments must coincide:

1
qt

= 1 + rt+1. (2.2)

(2.2) defines the real interest rate for investments in period t. (Notice the subtle change of notation:
In the last chapter, we called the interest on period-t investments rt. Now, we call it rt+1, as the
"interest" for physical capital comes through renting in t+ 1.) The fact that both assets offer the
same return renders households indifferent to the composition of their portfolio. They only care
about their net wealth dt, which is the sum of the market value of their positions in capital and
bonds. Finally, profits from ownership of the representative firm also constitute capital income.
But, as discussed below, these profits are zero.

Households supply hours of labor at a wage rate of wt per hour. Their pre-tax labor income is
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therefore wtnt. With income and net wealth, households demand consumption goods from the firm,
either to consume or to build physical capital.

Besides taxation over capital income described above, the government also charges a labor
income tax, at a flat rate τn,t, and a consumption tax, at rate τc,t. These forms of taxation are
called marginal taxation, since marginal changes in traded quantities of the corresponding goods
automatically lead to changes in the amount of due taxes. Likewise, τk, τn and τc are called marginal
tax rates. Besides marginal taxes, the government can also charge lump-sum taxes τL,t. As in chapter
1, the government uses its taxation revenue and proceeds from selling bonds to finance public
spending. In all, its sequential budget constraints are the following.

q0b0 + τc,0c0 + τk,0r0d−1 + τn,0w0n0 + τL,0 − g0 = b−1

τc,1c1 + τk,1r1d0 + τn,1w1n1 + τL,1 − g1 = b0
(2.3)

2.1.3. Households

We have described all elements of the model’s environment. We now to turn to a characterization
of households and firms’ demand and supply curves. In the case of households, we stick to the
sequential representation of households’ consumption-savings problem, stated below. (We use the
natural borrowing constraint, so there would be nothing wrong with stating the present-value
problem. However, the sequential version is a little simpler here.)

Max
c,n,d0

u(c0) + v(1− n0) + β [u(c1) + v(1− n1)]

d0 + (1 + τc,0)c0 ≤ [1 + (1− τk,0)r0] d−1 + (1− τn,0)w0n0 − τL,0
(1 + τc,1)c1 ≤ [1 + (1− τk,1)r1] d0 + (1− τn,1)w1n1 − τL,1

c0, c1 ≥ 0
0 ≤ n0, n1 ≤ 1

(2.4)

We can state budget constraints in terms of net wealth d, rather than capital and bond choices.
The lack of d1 in the constraint of period one captures the fact that households choose d1 = 0, as
the world ends afterwards. Furthermore, since the utility function is strictly increasing, our two
sequential budget constraints hold with equality.

Setting up the Lagrangian gives us two additional first-order conditions. The first one is the
Euler equation.

u′(c0)
1 + τc,0

= β [1 + (1− τk,1)r1] u′(c1)
1 + τc,1

(2.5)

The interpretation of the Euler equation is similar to (1.12). It captures consumption smoothing.
The new elements are the tax rates, on consumption and capital income. Capital income taxation
changes the perceived return on wealth. Consumption taxation affects the household’s ability to
convert wealth into consumption, in either period. We say that these taxes affect the households’
margin, that is, they are distortionary.
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For an interior solution 0 < nt < 1, we also get the first-order condition:

v′(1− nt) = 1− τn,t
1 + τc,t

wtu
′(ct) t = 0, 1. (2.6)

Economists refer to (2.6) as the intratemporal condition for optimal supply of labor hours. It reads:
Marginal benefit of one additional hour of leisure (left side) = marginal benefit of one additional
hour of work (right side). The benefit of additional leisure is the utility derived from it. The benefit
of the additional supply of labor hours is consumption value of the additional income. If (2.6)
did not hold, the household would be able to slightly increase leisure/labor to achieve greater
utility. Optimality precludes that. Entering the intratemporal condition, we again see the effects of
distortionary consumption and labor income taxation. Taxes on labor income affect the rate at
which the household converts labor hours into (available) income. Taxes on consumption affect the
rate at which it converts income into consumption. From a marginal point of view, higher labor or
consumption taxes are similar to lower wage rates.

And what is the effect of changes to the wage rate on the household’s supply of labor hours?
That’s a question we will return to in future chapters. Suppose the wage rate increases by a small
amount ∆w > 0. Will the household react by working more, since the payoff of working has
increased, or by working less, since it can increase leisure time while preserving or even increasing
its consumption? A priori, either case is possible. They capture opposing forces: a substitution
effect and a wealth effect. For brevity, let us set τn,t = τc,t = 0 in (2.6). Consider the effect of our
wage rate change ∆w > 0. By (2.6):

u′(c)∆w︸ ︷︷ ︸
Substitution
Effect, >0

+wu′′(c)∆c︸ ︷︷ ︸
Wealth

Effect, <0

= −v′′(1− n)∆n

The right-hand side above is the change in the marginal value of leisure. If the household works
more, ∆n > 0, the marginal value of leisure increases (recall that v′′ < 0 since v is strictly concave).
The left-hand side is the change in the marginal value of working. It contains two terms. The
first one is positive, and captures the substitution effect: The marginal value of working increases
because the reward (in utility units) for these labor hours increases. The second term is negative,
provided that the household increases consumption in response to the higher wage, ∆ct > 0 (recall
that u′′ < 0). It captures the wealth effect: Higher consumption reduces the value of working,
because the additional income does not provide as much marginal utility as before. Working one
more hour gives an increase in income, but that income increase provides less utility. (One can
more easily digest the wealth effect by considering why lottery winners often quit their jobs.) In
all, the effect of wage changes ∆w on optimal labor supply is ambiguous. By extension, so is the
effect of distortionary taxation.

2.1.4. The representative firm

The firm (let’s drop "representative") has access to the production function. It rents physical capital
and hires labor hours from households to produce consumption goods. It then sells these goods to
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the government and to households. As such, the firm’s problem is to decide how much capital and
labor hours to demand. Its objective is to maximize profits, period by period:

Maxk,n f(k, n)− (rt + δ)k − wtn t = 0, 1.

There is no intertemporal dimension to the firm’s problem. We say its decisions are purely static.
Additionally, our firm cannot derive positive profits in equilibrium, in either period. Indeed, since f
is homogeneous of degree one, if there was any capital-labor pair (k, n) that led to positive profits,
the firm could hire 2× (k, n) to produce f(2k, 2n) = 2× f(k, n), and hence acquire twice the profit.
Iterating on that argument, you can see why there would be no finite level of demand for capital
or labor. Also, profits cannot be negative, since the firm always has the option of shutting down
and getting zero profit (this is why we assume f(0, 0) = 0). In conclusion, the representative firm
has zero profits in both periods, which is why we do not discuss household equity ownership.

The two first-order conditions for optimal demand of capital and labor hours are:

fk

(
kt−1

nt
, 1
)

= rt + δ, (2.7)

fn

(
kt−1

nt
, 1
)

= wt, t = 0, 1. (2.8)

The derivative terms fk and fn are called marginal productivity. As the name says, they tell us the
marginal increase in production from raising capital or labor hours by a very small amount. The
interpretation of these first-order conditions is similar to other ones we have seen so far: Marginal
benefit of hiring more of production factor X (its marginal productivity) = Marginal benefit of
hiring less of it (its market price). Since f is homogeneous of degree one, Euler’s theorem tells
us that its derivative functions fk and fn are homogeneous of degree zero. In economic terms,
doubling or halving both capital and labor hours applied to production does not alter their marginal
productivity. When writing the two conditions above, we take advantage of that fact to divide
both arguments by nt. In conclusion, we see that optimal firm behavior connects the capital rent
rate (= real interest) rt and the wage rate wt to the capital-labor ratio of the economy.

2.2. Competitive equilibrium and model implications
Like in chapter 1, we fix the time series that characterize fiscal policy before defining an equilibrium.
These time series are τk, τn, τc, τL and g. The competitive equilibrium of our economy is defined
by two conditions: 1. households and firms choose quantities optimally given prices; 2. prices are
such that all markets clear. Optimality requires that (2.5), (2.6), (2.7), (2.8) hold. Market clearing
must happen in five markets: that of labor in t = 0, 1, consumption goods in t = 0, 1, and capital
in t = 0 (in period one, d1 = b1 = k1 = 0).

The market-clearing condition in the consumption goods market is given by (2.1). In the labor
market, the number of hours of labor supplied by households nt must be the same number of hours
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nt demanded by firms. In the capital market, the equilibrium condition is:

d0 = q0b0 + k0. (2.9)

Households’ net wealth at the end of period zero coincides with the market value of debt issued by
the government plus the stock of physical capital held by households. To ensure consistency of the
model, we always assume that the initial conditions of the two-period economy satisfy

d−1 = q−1b−1 + k−1 and 1 + r0 = 1
q−1

.

(This is necessary for Walras’ Law to hold. If the market for consumption goods clears in period
zero, the capital market will clear; thus the market for goods in period one will clear too.) Exercises
at the end of the chapter will guide on how to compute the equilibrium numerically.

Model implications

1. Equivalency between consumption tax τc and labor tax τn.
For example, the government can raise τc,0 and reduce τn,0 while keeping consumption,
labor hours and prices unchanged in the competitive equilibrium. Indeed, consider a new
consumption tax τ̃c,0 > τc,0, such that (1 + τ̃c,0) = a(1 + τc1) for some a > 1. Let us use tilde
notation τ̃ to denote new tax rates.
According to the Euler equation (2.5), the government can keep the intertemporal margin
unchanged by promoting (1 + τ̃c,1) = a(1 + τc1). Hence τ̃c,1 > τc,1. According to intratemporal
condition (2.6), it can keep the labor margin unchanged with (1− τ̃n,t) = a(1− τn,t), in both
periods. Hence τ̃n,t < τn,t. In words: the government must raise consumption tax rates in
both periods (not just period zero), and reduce income tax rates.
These changes ensure that household margins are unchanged. Indeed, the Euler equation
(2.5) and the intratemporal condition (2.6) hold under the same consumption and labor hour
choices as the original equilibrium. But are these choices compatible with households’ original
wealth? Algebraically: will households’ present-value budget constraint be satisfied and hold
with equality at the old consumption choice? Not necessarily. However, the government can
select lump-sum taxes τ̃L,0 and τ̃L,1 to ensure that it does. (Question: to keep households’
wealth unchanged, should the government change lump-sum taxes in t = 0 or t = 1?)
Final points: 1. the capital tax rate must not change: τ̃k,t = k̃, t. You can see this from the
Euler Equation. 2. We started with a period-zero change to consumption taxes. It was just
an example. Changes to period-one income tax could just as well yield the same equilibrium,
if the government adjusted period-zero marginal taxes and lump-sum taxes accordingly.

2. When labor supply is inelastic, constant consumption and labor taxes are not distortionary,
like lump sum taxes.
If households do not derive utility in leisure (v(`) = 0 for all `), they have incentive to supply
all their labor hours to maximize labor income and hence consumption. One of the exercises of
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the end of the chapter asks you to prove that claim. We get nt = 1 in both periods and drop
the first-order condition (2.6), which holds only for interior solutions. Now, labor income
taxes do not distort any margins. Likewise, if consumption taxes are constant over time
τc,0 = τc,1, they cancel with each other in the Euler equation (2.5), and also fail to distort
margins. Nevertheless, changes to both of these taxes still affect households’ present-value
wealth, like lump-sum taxes.

3. Capital taxation is distortionary, regardless of labor supply elasticity.

This is a direct consequence of the Euler equation (2.5).

4. Public debt crowds out private capital (as long as private savings not infinitely elastic).

This is a direct consequence of the market-clearing condition in the capitals market (2.9).
See the numerical exercises.

Exercises
Exercise 2.1. In this exercise, we focus on the optimal supply of labor by the household in

period zero. The properties of labor supply in period one are analogous.

(a) Mind the physical constraint on labor hours: 0 ≤ n0 ≤ 1. Set up the Lagrangean for the
consumption-savings problem (2.4) to find the general first-order condition for the intratemporal
choice of labor supply:

w0u
′(c0) ≥ v′(1− n0) if n0 > 0

w0u
′(c0) ≤ v′(1− n0) if n0 < 1.

Argue that, when households do value leisure (v(`) = 0 for every `), they supply their entire supply
of hours: n0 = 1.

(b) For the following items, assume u(c) and v(1− n) are isoelastic:

u(c) = c1− 1
γ − 1

1− 1
γ

v(`) = `1− 1
ψ − 1

1− 1
ψ

(2.10)

Argue that households will not supply their entire labor endowment: n0 < 1.

(c) Find the lowest level of period-zero consumption c0 compatible with a zero supply of labor
hours n0 = 0. Interpret the existence of this lower bound on consumption.

(d) Show that the ψ is the Frisch elasticity of labor supply, defined as the change in labor hours
supplied given a change in the log of the wage rate, fixing the marginal value of consumption:

Frisch elasticity = ∂n0

∂ logw0

∣∣∣∣
constant u′

.
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Hint: use the approximation log(1− n) = −n when n ≈ 0. (Note: economists often define Frisch
elasticity as the change in log hours, to focus on percentual change in labor hours. Here, we define
it as a change in n0 because n0 already represents the share of available hours devoted to labor.)

Exercise 2.2. In this exercise, we study how the volume of taxation affects the equilibrium in
the capital market, in the absence of marginal distortions. The government begins period zero with
no debt b−1 = 0. Fiscal policy is characterized by a lump sum tax series τ = (τ0, τ1). There is no
public spending, and no marginal taxation. Households derive no utility in leisure, and thus supply
their entire endowment of working hours n0 = n1 = 1. The production function available to the
representative firm displays perfect elasticity of substitution between capital and labor:

yt = f(kt−1, nt) = (r̄ + δ)kt−1 + w̄nt,

which implies that, in equilibrium rt = r̄ and wt = w̄, for t = 0, 1. Households face the natural
borrowing limit.

(a) Write the household’s consumption-savings problem, using the equilibrium prices. Replace
its sequential budget constraints on the Euler equation to find an expression defining the optimal
choice of net wealth d0 in equilibrium.

(b) State the household’s present-value budget constraint. Does Ricardian Equivalence hold?

(c) Starting from a given equilibrium, suppose the government raises lump-sum taxes in
period zero τ0 by ∆τ0 > 0, without changing τ1. Use the condition derived in (a) to show that
−∆τ0 < ∆d0 < 0. Provide an intuition.

(d) Considering the fiscal policy change of (c), compute the change in physical capital ∆k0.
What is the effect of a tax increase in period-one output?

Exercise 2.3. Suppose marginal taxes are constant: τc,0 = τc,1, τk,0 = τk,1. Assuming equilib-
rium households’ consumption is also constant c0 = c1 > 0. Use the Euler equation (2.5) and the
firm’s capital demand schedule (2.7) to find the equilibrium interest rate r1 and the capital labor
ratio k0/n1. In economic models with infinite periods, these values are the steady-state levels of
interest and capital labor ratio. Which forms of taxation affect the steady-state interest rate?

Exercise 2.4. In this exercise, we are interested in representing graphically the equilibrium
in the capital markets, in a version of our two-period economy with inelastic labor supply. The
functional formats are

u(c) = log(c) f(k, n) = kαn1−α.

Households derive no utility in leisure, v(`) = 0, and therefore supply their entire endowment of
labor: nt = 1.

You should write your solution code for a general set of parameters, that you can easily change
later. In the baseline specification, use β = 0.75, α = 0.5 and δ = 0. For now, we shut down the
government: set all taxes, public spending and public debt to zero. The initial conditions for capital
and household wealth is : k−1 = d−1 = 1.
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Capital labor ratios k−1 and k0 determine prices (w, r) through the firm’s first-order conditions
(2.7) and (2.8). (k−1 and k0 are capital labor ratios since n0 = n1 = 1). Initial capital k−1 is
predetermined, so we focus on k0. Build an equally-spaced grid K for period-zero physical capital,
with twenty points:

0.25 = k1 < k2 < · · · < k20 = 1.25.

For each k0 ∈ K, follow the steps below.

(a) Find the associated prices (w, r) using (2.7) and (2.8).

(b) Pick a one thousand-sized grid D of household net wealth points

0.25 = d1 < d2 < · · · < d1000 = 1.25.

We make D thinner than K to make sure that we approximate the optimal choice of household
savings with a low error. For each wealth point d0 ∈ D, use the sequential budget constraints to
find the associated period-zero and period-one consumption, loosely denoted c0(d0) and c1(d0).

(c) Compute households’ optimal savings choice d∗0 as the D point that maximizes utility:

d∗0 = Argmax
d0∈D

u(c0(d0)) + βu(c1(d0)).

(Whenever c0(d0) < 0, discard the candidate choice of d0.)

(d) Repeat (a)-(c) to all k0 ∈ K. You should have a pair of vectors r1(k0) and d0(k0) containing
the period-zero interest and households’ savings for each grid point. Do higher capital points k0 in
the grid correspond to lower or higher choices of wealth d0 by the household? Explain intuitively.

(e) Plot capital demand k0 and capital supply d0(k0) as functions of interest r1(d0). Interest
should be on the vertical axis of your plot.

(f) How does the equilibrium change if we make households more impatient? Repeat (a)-(d)
using β = 0.50, and update your capital equilibrium plot of exercise (e) with the new capital supply
curve.

Exercise 2.5. Consider again the environment of Exercise 2.4., but we now add an active
government. To keep the exercise simple, the government chooses taxation parameters exogenously,
and adjusts public spending to ensure fiscal policy is sustainable. Initially, marginal taxes are fixed
at 10%:

τc = τn = τk = [0.1 0.1]′,

and there is no lump-sum taxation, period-zero public spending is g0 = 0.3. The government has
no initial debt: b−1 = 0 .

Your mission is to compute the equilibrium of the economy. We adopt an iterative procedure to
find the equilibrium capital labor ratio, with each iteration indexed by the symbol i. Given the
firms’ first-order condition (2.7), searching in the space of capital labor ratios is similar to searching
in the space of interest or wage rates. Start by guessing a period-zero capital labor ratio ki=0

0 = 1.
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(a) Given a candidate capital labor ratio ki0, follow steps (a)-(c) of the previous exercise to
compute households’ optimal savings d∗i0 . Calculate the government’s net debt position bi0 in period
zero, and then the stock of physical capital that clears the capital market:

k̃i0 = d∗i0 − qi0bi0.

If k̃i0 ≈ ki0, stop. You have found the solution. Otherwise, you must update the capital labor ratio
for the next iteration. Either set ki0 = k̃i, or use damping to improve numerical stability:

ki+1
0 = σk̃i0 + (1− σ)ki0

where σ ∈ (0, 1). After finding the equilibrium capital labor ratio, compute equilibrium r, w and
c. Compute the level of government spending in period one g1, and verify that the market for
consumption goods clears.

(b) Repeat exercise (a), raising τc,1 and τk,1 to 0.2, one at a time. Report how wages, interest
and household consumption change, and explain the new results intuitively.
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Chapter 3

Income Risk and Public Insurance

This chapter introduces uncertainty to our framework. In a first step, we revert to the basic two
period model of chapter 1, but with the addition of idiosyncratic income risk in the form of random
endowments. Households are risk-averse and engage in precautionary savings to protect their
period-one consumption from income risk. The government can improve ex-ante utility by seizing
aggregate labor income and redistributing proceeds equally among households. In a second version
of the model, we introduce elastic labor supply and marginal income taxes. Higher tax rates reduce
the aggregate labor supply, leading to hump-shaped Laffer curves.

3.1. Introducing Risk
Same setup as chapter 1, but now households face idiosyncratic income risk in period one.

y1 =

ȳ1 + z with probability 1/2
ȳ1 − z with probability 1/2

Parameter z introduces risk. When z = 0, we recover the deterministic case y1 = ȳ1.
The expected value of period-one income is

E[y1] = 1
2 (ȳ1 + z) + 1

2 (ȳ1 − z) = ȳ1.

Given the existence of a unity measure of households, ȳ1 is the aggregate output in period one.
We must adapt utility function to accommodate the existence of uncertainty. Assume expected

utility format
u(c0) + βE[u(c1)] = u(c0) + β

[
0.5u(cH1 ) + 0.5u(cL1 )

]
,

where cH1 is consumption in the "high" income state, cL1 in the "low" income state. When z = 0, we
recover the original utility function u(c0) + βu(c1). We say households are (strictly) risk-averse
when u is (strictly) concave. We assume u to be strictly concave.

How does the introduction of risk changes demand for consumption goods and public bonds?
Assume natural borrowing limit, and that limc→0 u

′(c) =∞, so that the solution to consumption
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is interior with respect to the borrowing limit. Consider first the original case with deterministic
y1 = ȳ1 and no government. Let aD0 denote public bond demand ("D" for deterministic), and the
same for cD. Optimality requires the Euler equation:

q0u
′(y0 − q0a

D
0 ) = βu′(aD0 + ȳ1). (3.1)

The effect of introducing income risk on household income depends on whether u′ is a concave or
convex function. That is, it depends on the third derivative of the utility function u′′′. It is common
to assume limc→0 u

′(c) =∞ and limc→∞ u
′(c) = 0, suggesting that u′ is a convex function: u′′′ > 0.

This is the case with the common isoelastic utility function.
The consumption-savings problem faced by the household in the presence of income risk:

Max
c,a0

u(c0) + β
[
0.5u(cH1 ) + 0.5u(cL1 )

]
s.t. q0a0 + c0 ≤ y0 (3.2)

cH1 ≤ a0 + y1 + z (3.3)
cL1 ≤ a0 + y1 − z (3.4)

c0, c1 ≥ 0

Since u′(0) =∞, households choose positive consumption in both states, and borrowing constraint
does not bind. In the interior solution, the Euler equation is:

q0u
′(c0) = β

[
0.5u′(cH1 ) + 0.5u′(cL1 )

]
= βE[u′(c1)]. (3.5)

Replacing the sequential budget constraints (3.2)-(3.4):

q0u
′(y0 − q0a0) = βE[u′(a0 + y1)]

When u′ is a strictly convex function (u′′′ > 0), households react to the introduction of income
risk by reducing consumption and raising demand for public bonds. To see this, apply Jensen’s
inequality to the Euler equation:

q0u
′(y0 − q0a0) = βE[u′(a0 + y1)]

> βu′(a0 + E[y1])
= βu′(a0 + ȳ1)

Compare the inequality above with (3.1). Households react to the introduction of randomness
by changing demand for bonds so as to increase period-zero marginal utility, relative to the
deterministic case. How come? In the presence of risk, they equate marginal utility in t = 0 to
expected marginal utility of consumption in t = 1 (E[u′(c1)]), which is higher than the marginal
utility of expected consumption (u′(E[c1])). Intuitively, the combination of u′(cH1 ) and u′(cL1 ) is
higher than u′(E[c1]) because the value of consumption does not drop as much when c grows as it
increases when c declines. Hence, to satisfy the new version of the Euler equation, households reduce
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consumption in period zero, and increase public bond demand a0, a behavior called self-insurance.
Economists also say that households engage in precautionary savings.

The introduction of randomness in the income process reduces household welfare, ex-ante:

u(cD0 ) + βu(cD1 ) ≥ u(c0) + βu(c̄1) ≥ u(c0) + β
[
0.5u(cH1 ) + 0.5u(cL1 )

]
(In the expression above, c represents optimal consumption in the income risk case.) The first
inequality follows from optimality of cD in the deterministic case; the second inequality follows
from concavity of u (Jensen’s inequality). Since we assume u to be strictly concave, the expression
holds with strict inequality.

Utilitarian government can improve ex-ante welfare by charging 100% income tax in period
one, and fully re-distributing proceeds.

3.2. An Environment with Elastic Labor Supply
Introduce elastic labor supply. Households remain identical in period zero, and supply their entire
endowment of hours to firms: n0 = 1. In period one, they value leisure, as captured by the utility
function:

u(c0) + βE [u(c1) + v(1− n1)] .

For the remainder of this section, we focus on period one. Period utility in t = 1 is u(c) + v(1− n),
where n is number of hours devoted to labor. We assume twice differentiable, increasing, concave u
and v. Additionally, lim`→0 v

′(`) =∞, so households always devote some time for leisure: n < 1.
No physical capital. Households provide differentiated labor hours. Each household has an

individual (or idiosyncratic) level of productivity z, meaning that n hours of its labor corresponds
to z × n efficiency hours of labor. Efficiency hours of labor differ from physical hours of labor
because they incorporate individual productivity. Random variable z can take S different values:
z1 < z2 < · · · < zS, with probability p1, p2, . . . , pS, respectively. Of course, ∑s ps = 1.

Productivity draws are independent from each other. Therefore, after draws occur, p1 households
land state s = 1, p2 land s = 2, and so on. This is an application of the law of large numbers.

We break down production into two layers. A representative intermediary firm hires labor
hours from households and builds a homogeneous "aggregate efficiency labor" commodity (or just
"aggregate labor", for brevity). The representative firm that produces consumption goods uses
aggregate labor as the only production factor.

The intermediary firm aggregates labor using the production function

n̄1 =
∫ 1

0
z(j)n(j)dj = p1(z1n

z1
1 ) + · · ·+ pS(zSnzS1 ) = E [znz1] .

In the integral, z(j) is the productivity of household j and n(j) is its labor choice. I also define
nz1 as the working hours choice made by households with productivity z. We characterize their
optimal choice later.

The intermediary firm sells the n̄1 aggregate hours at a rate of w1 per hour. Since technology is
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Symbol Description
nz1 Labor hours supply by household with productivity z
n̄1 Aggregate (efficiency) hours labor
w1z Wage rate per hour of labor
w1 Wage rate per efficiency hour of labor

h1 = w1n̄1 Aggregate labor income
rev = τh1 Public revenue from labor income

Table 3.1: Key Labor Market Variables in Period One

linear, in equilibrium the wage rate is w1 × z. Hence, we refer to w1 as the wage rate per efficiency
hour of labor. The aggregate labor income h1 is

h1 =
∫ 1

0
w1z(j)ñ(j)dj = w1n̄1.

Table 3.1 summarizes labor market variables in period one.
Breaking the wage rate between its idiosyncratic and common components is convenient because

the number of aggregate hours of labor demanded by the consumption good producer depends
only on the latter. Since we focus on taxation, suppose the final good producers converts one hour
of aggregate labor into one consumption good. Hence, w1 = 1. (In any case, we continue to write
w1 in the formulas, for clarity of the arguments.) In this setup, all firms are indifferent regarding
production scale: their profits equal zero regardless.

3.3. Taxation and Laffer Curve
We are interested in studying if and how the government can use fiscal policy to help insure
households against income risk. We start by focusing on a fiscal policy that combines a flat tax τ
on labor income and lump-sum transfers R to households, both imposed only in period one. This
notation simplifies the more cumbersome τn,1 and τL,1 symbols of chapter 2, which we can drop
since there are no other taxes.

By the sequential budget constraint, period-one consumption for a household with productivity
z is

cz1 = a0 + (1− τ)w1zn
z
1 +R.

The first-order condition for labor supply:

(1− τ)w1z u
′(cz1) ≤ v′(1− nz1) (= if nz1 > 0) (3.6)

Marginal benefit of working +1 hour = marginal cost; otherwise, household are constrained. Since
v′ > 0, 100% taxation τ = 1 leads to nz1 = 0: households supply no hours of labor.

For the remainder of this section, we fix a0, w1 and R, and express optimal labor choice nz1(1−τ)
as a function only of the net-of-tax parameter 1− τ . Because of substitution and wealth effects, an
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Figure 3.1: Laffer Curve Example

increase in τ has an ambiguous effect on n1 (but we know that n1 = 0 when τ = 1).
With the individual labor supply nz1(1− τ), we can compute aggregate labor supply

n̄1(1− τ) = p1(z1n
z1
1 (1− τ)) + . . . pS(zSnzS1 (1− τ))

and the aggregate labor income h1(1 − τ) = w1n̄1(1 − τ). By charging a marginal rate τ , the
government raises a total revenue of τh1. Express that as a function of τ :

rev(τ) = τ h1(1− τ) ≥ 0.

Function rev(τ) is known as the Laffer curve. Its shape depends largely on the labor supply model
at hand. In general:

· rev(0) = 0 (τ = 0, no taxes charged)

· rev(1) = 0 (n1 = n̄1 = 0, households have no incentive to work).

In the particular case that h′ ≥ 0 and h′′ ≤ 0, the Laffer curve has an inverted-U shape. Figure 3.1
shows an example.

Revenue-maximizing tax rate τ̄ satisfies rev′(τ̄) = 0:

rev′(τ̄) = h1 − τ̄h′1 = 0, (3.7)

where h1 and h′1 are both evaluated at the point 1− τ̄ . Re-writing the expression above yields:

τ̄ = 1
1 + e

where e = ∂h(1− τ̄)
∂(1− τ)

1− τ̄
h(1− τ̄) (3.8)

is the elasticity of aggregate labor income to after-tax efficiency wage rate (1− τ)w1, which we can
measure empirically. Higher elasticities are associated with lower optimal tax rates.
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3.4. Optimal Insurance
To provide insurance against income risk, the government distributes the proceeds from the labor
tax charge back to households in the form of a lump-sum transfer R. Each household receives
the same transfer: we thus model a universal basic income program. If the government uses all
available resources, and if the policy is sustainable, R = rev(τ); so we can write R(τ).

We continue to leave a0 and w1 fixed. Which tax rate τ maximizes household welfare ex-ante
(i.e., prior to the productivity draw)? Utility at the beginning of period one:

E [u(a0 + (1− τ)w1zn
z
1 +R(τ)) + v(1− nz1).]

(Labor supply n1 evaluated at (1− τ).) To facilitate notation, let

u′z(τ) = u′ (a0 + (1− τ)w1zn
z
1(1− τ) +R(τ))

be the period-one marginal utility of a household that draws z. The first-order condition for optimal
tax rate τ ∗ is

E [u′z(τ ∗)]R′(τ ∗) = E [u′z(τ ∗)znz1(1− τ ∗)] > 0.

(Note the application of the envelope theorem.) Since u′ > 0, R′(τ ∗) = rev′(τ ∗) > 0. Compare this
condition to (3.7). Isolating optimal taxation:

τ ∗ = λ

λ+ e
, (3.9)

where
λ = −cov (u′z, znz1)

n̄1E(u′z)
≥ 0

measures the degree of consumption inequality after public insurance has been implemented. If
the government manages to equalize consumption across households, u′ is constant and hence
λ = 0. Otherwise, λ > 0 since marginal utility decreases in consumption and hence in realized
labor income znz1.

Optimal taxation is increasing in inequality, and decreasing in labor supply elasticity.

Exercises
Exercise 3.1. In the context of the model with elastic labor supply and heterogeneous pro-

ductivity, express aggregate labor income as a function of the labor tax rate H1(τ) ≡ h1(1− τ).
Show that the tax rate τ̄ that maximizes government revenue attains

−∂H1(τ̄)
∂τ

τ̄

H1(τ̄) = 1.
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That is, the elasticity of H1 with respect to the tax rate is equal to one in the revenue-maximizing
point. Provide an interpretation.

Exercise 3.2. Consider a model with discrete labor choice and no uncertainty. Households
can either supply their whole endowment of hours n1 = 1, or no hours at all n1 = 0. They enter
period one with a public bonds, and are offered a wage rate of w. Period-one utility is

u(c)− ζ 1n=1,

where ζ > 0, and 1n=1 is an indicator function, which equals one when n = 1, and zero otherwise.
Function u is increasing.

(a) Start by assuming there is no taxation. Compute the household’s labor supply decision rule,
as a function of a and w.

(b) Suppose the government charges a flat marginal tax rate τn,1 on labor income, and uses the
revenue for public spending (which households do not value). Re-compute the household’s decision
rule. Find the expression defining the threshold taxation level τ ∗n,1 above which households opt not
to work.

(c) Sketch the plot of the Laffer curve.

(d) Suppose u(c) = log(c). How does τ ∗n,1 depend on households’ wealth a? Explain intuitively.

Exercise 3.3. We consider a particular case of GHH preferences (following Greenwood, Her-
cowitz and Huffman). In period one, the utility function is u(c+ Φv(1− n)), where u is increasing
and differentiable, and

v(1− n) = (1− n)1−1/ψ

1− 1/ψ .

(a) Compute the first-order condition for the optimal choice of labor in period one. Since
v′(`)→∞ when `→ 0, n1 < 1: you only need worry about the lower bound on labor choice. Show
that when w ≤ Φ, the household does not work: n1 = 0.

(b) Use the first-order condition to argue that there is no wealth effect on labor supply.

(c) With the help of a computer, set Φ = ψ = 0.5 to reproduce the Laffer curve in figure 3.1.

Exercise 3.4. In a one-period economy, households have GHH preferences over consumption
and leisure (see exercise above), sorted according to the utility function:

log (c+ α log(1− n)) ,

where α = 0.5, c is personal consumption and n denotes total hours devoted to labor. They face
the budget constraint c = wn where w is the net-of-tax wage rate.

(a) Suppose that the wage rate is such that households supply a non-zero number of hours in
the labor market, but also devote some time to leisure (i.e.0 < n < 1). Compute the individual
labor supply curve.

32



There is a unity continuum of households. At the beginning of the period, each of them is
randomly and independently assigned to the formal or to the informal sector of the economy,
with 50% probability each. Formal sector workers transform n hours of labor into 2 goods, which
constitutes their gross wage rate wF = 2. Informal workers are less productive: wI = 1.

(b) The government establishes a flat income tax of τ ∈ [0, 1], chargeable only over formal
workers. Compute the Laffer curve, as well an upper bound on the set of tax rates that lead to
non-zero tax proceeds.

Now, suppose there are two periods t = 0, 1. In t = 0, agents trade real public bonds at a price
q0, but bonds are in zero net supply (no public debt). Informal labor exists only in period one.
Households work full time and have utility function

log(c0) +
[1
2 log(c1,F ) + 1

2 log(c1,I)
]
,

where subscripts F and I indicate consumption if formal or informal worker, respectively. Labor
income is w0 = 1 in period zero. In period one, wF = 2 and wI = 1, like before.

(c) The government imposes an income tax τ in t = 1. All revenue is transferred back to
households. Find an a lower and an upper bound for the price of bonds q0. (Hint: consider prices
when τ = 0 and τ = 1. Why does q0 vary in the direction it does?)

Exercise 3.5. Universal basic income (UBI) programs propose that every individual receives
an unconditional transfer of money, regardless of their earnings and other aspects of tax legislation.
Consider a UBI scheme that transfers R consumption goods, and taxes all households at a flat
rate of τ . Show that this UBI program is economically equivalent to a non-UBI, nonlinear taxation
scheme that establishes two income brackets: h ≤ ĥ = R/τ and h ≥ ĥ. Find the required tax
functions T0(y) and T1(y) in each income bracket (households that earn less than h < ĥ pay T0(h)
in taxes; those who earn h ≥ ĥ pay T0(ĥ) + T1(h− ĥ)).

Exercise 3.6. Consider the elastic labor supply model of the main text, in which the govern-
ment inherits no public debt: b−1 = 0. All households have access to half a unit of the consumption
good in period zero (y0 = 0.5) from labor endowment. Households have the utility function

u(c0) + βE [u(c1) + v(1− n1)]

where u(x) = v(x) = log(x), and β = 0.8. Productivity z can take two values: z1 = 1 + σ and
z2 = 1− σ, each with probability p = 0.5.

(a) Initially, the government does not tax or transfer goods. In equilibrium, what is the net
wealth a0 of each household in the beginning of period one? Show that the optimal labor supply is
n1 = 0.5, regardless of z. Compute household income as a function of productivity. (To solve this
problem, recall that w1 = 1.)

(b) With the help of a computer, plot the equilibrium interest rate as a function of σ (vary σ
from 0 to 0.4), and provide an interpretation for your findings.
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(c) Let σ = 0.2. Suppose now that the government introduces a basic income program, funded
by a τ = 0.2% flat labor income tax. Derive analytically each households’ optimal labor supply
nz1, given the government’s transfer R. Your first task is to compute the government revenue R
from taxing labor income, which depends on household labor supply (which, in turn, depends on
R itself).

Write in your code a function that computes optimal labor supply given a lump-sum transfer
R. Write up a second function g(R) that uses the first one to calculate the government revenue
from taxing households. The equilibrium revenue raised by the government by taxing labor income
satisfies the fixed-point problem: R = g(R). Compute R. (Tip: adopt an iterative procedure. Guess
some R0; then update your guess using Ri = g(Ri−1) until Ri is close enough to the fixed point.)

(d) With the equilibrium lump-sum transfer R, compute the equilibrium interest rate, and
compare it with the interest rate arising in the absence of taxation. Explain intuitively why results
differ. Does public insurance against income risk guarantee a decline in period-zero demand for
bonds?

Exercise 3.7. Model with capital.
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Chapter 4

Introduction to Finite-Horizon Dynamic
Programming

4.1. Dynamic Programming Concepts

4.2. Adding Uncertainty

4.3. Computing Optimal Supply of Labor
This section provides an algorithm to compute household’s optimal supply of labor hours. Define
the "net" marginal benefit of increasing working hours

h(n) = wu′(wn+ z)− v′(1− n),

where w is the after-tax income and a is a term that groups other components of the budget
constraint, like bond redemptions, new bond purchases and government transfers. Here, we fix
both w and z. When h(n) > 0, the marginal benefit (in utility units) of working a little more
wu′(wn+ z) outweighs the marginal cost v′(1− n) of reducing leisure hours.

We usually assume u and v are concave, which implies that u′′, v′′ < 0 and, thus, h′(n) < 0. As
you work more, the benefit of increasing labor hours declines - first because leisure becomes scarcer
(thus more valuable, v′ term) and, second, because consumption grows (thus becomes less valuable,
u′ term).

Let n∗ be the optimal supply of labor hours. We can split the first-order condition for n∗ to
be optimal in three cases. Case 1: If n∗ is an interior solution for the household problem, then
h(n∗) = 0. Case 2: If n∗ = 0 and the household is constrained by the fact that it cannot work less
than zero hours, then h(n∗ = 0) ≤ 0. Case 3: If n∗ = 1 and the household is constrained by the
fact that it cannot work more than all available time, then h(n∗ = 1) ≥ 0. Figure 4.1 depicts three
examples of h, each with a solution belonging to a different case.

In practice, we do not know from the beginning which case is right. However, since net marginal
benefit always declines in labor hours (h′ < 0), we know that h′(n∗) = 0 can only hold for a single
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(a) Interior Solution (b) Lower Bound Solution (c) Upper Bound Solution

Figure 4.1: Marginal Net Benefit Function h: Solution Cases

point. We can therefore adopt the following algorithm to numerically (or analytically) compute n∗:

1. If h(0) ≤ 0, then n∗ = 0. Stop.

2. If h(1) ≥ 1, then n∗ = 1. Stop.

3. Otherwise, search for the zero of h in the interval (0, 1).

If you get to the last step, then you know that h(0) > 0 and h(1) < 0 (otherwise the algorithm
stops in one of the previous steps). In that case, you need to find the zero of function h, that is,
the point n∗ between zero and one such that h(n∗) = 0.

A simple bisection method can be applied to find the zero of h. Starting with n0 = 0 and n1 = 1,
follow the steps below.

1. Define n = n0+n1
2 .

2. If n0 ≈ n1 or h(n) ≈ 0, stop. You have found the zero of h.

3. If h(n) > 0, set n0 = n and go back to step 1.

4. If h(n) < 0, set n1 = n and go back to step 1.

(The bisection method above assumes h is decreasing; if you are interested in finding the zero of an
increasing function f , you can imply the steps to −f .)

Exercises
Exercise 4.1. Given a decreasing function f , and two points a < b, write the code of a function

that applies the bisection method described in section 4.3 to find the zero of f between a and b.

(Tip: In the context of iterative procedures that depend on control clauses to end - like the
bisection method -, it is good practice to limit the number of iterations the algorithm can perform.
Otherwise, typos or unfortunate examples can lead your computer to loop over the iteration
endlessly.)
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Exercise 4.2. Let

u(c) = c1− 1
γ − 1

1− 1
γ

and v(`) = `1− 1
ψ − 1

1− 1
ψ

.

When γ = 1, u = log, and the same is true for ψ and v. Write a code that applies the algorithm
described in section 4.3 of this chapter to compute the optimal labor supply choice in the problem

Max
n

u(wn+ a) + v(1− n) s.t. 0 ≤ n ≤ 1.

Use can use the bisection function you wrote in the previous exercise.
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Chapter 5

Overlapping Generations and Pension
Systems

This section introduces overlapping generations, a framework to study inter-generational economic
relationships. With infinite periods, the decentralized equilibrium is not optimal. A three-period
version of our basic model shows how the assumption of overlapping generations breaks Ricardian
Equivalence. We also use it to model "pay-as-you-go" pension systems. We are specially interested
in its effect on aggregate savings.

5.1. OLG in Infinite Periods

Infinite periods t = 0, 1, 2, . . . . Each period, new generation of households born (unity measure).
Households live for two periods, "young" and "senior". Single consumption good. Young households
receive an endowment of one unit of the consumption good. No government action.

Let cts be period-s consumption of household born in period t, with s ∈ {t, t + 1}. Let att be
bond position (households allowed to sell bonds to each other). Linear preferences, no discounting:

Max
ct≥0,att

ctt + ctt+1 (5.1)

s.t. qta
t
t + ctt ≤ 1

ctt+1 ≤ att (5.2)

Finite demand for public bonds only when qt = 1.
Market clearing conditions in period t:

ctt + ct−1
t = 1
att = 0

In equilibrium, qt = 1 and each household consumes its own endowment when young.
However, this equilibrium is not Pareto optimal. Problem of infinity. Alternative allocation:

generation born in t transfers its endowment to generation born in t− 1. All generations left with
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the same single consumption good, except t = 0 generation, which gets two consumption goods.

5.2. Three-Period Environment
Three periods: t = 0, 1, 2. Two generations: A and B. Each with the same size of one. Generation
A lives in periods zero and one, not in period two. Generation B is born in period one, and lives in
period two. First period of life: "young". Second period: "senior".

Single consumption good. No capital. Households can only work when young. When senior, they
receive an exogenous endowment of e units of the consumption good (home production). Linear
production function f(n) = n implies wage rate w = 1.

We initially ignore the government. Natural debt limit. Households subject to the natural debt
limit. Those of generation A solve the problem

Max
cA≥0,aA0

u(cA0 ) + v(1− nA0 ) + βu(cA1 )

s.t. q0a
A
0 + cA0 ≤ nA0

cA1 ≤ aA0 + e.

(5.3)

Households of generation B solve a consumption-savings problem analogous to (5.3).
The market-clearing conditions are the following:

cA0 = nA0 (5.4)
cA1 + cB1 = nA1 + e (5.5)

cB2 = e (5.6)

In equilibrium, neither generation saves or borrows - bond prices must be such that not trading in
the bond market is their optimal choice.

Household heterogeneity embedded in models with overlapping generations provides an easy
way to break Ricardian equivalence. The timing of taxes affects individual and aggregate demand
because it affects the total income of different households.

5.3. A Pension System Model
Model with a "pay-as-you-go" pension system. Young generation B pays for senior generation A
households in period one. Households from generation A face a probability ρ ∈ [0, 1] of "retiring" in
period one. We can use ρ to capture the size of the pension system as well as the retirement age.

Retired seniors receive a lump-sum transfer of φ consumption goods. Young households from
generation B finance retirement payments through a lump-sum tax τ (we drop subscripts from τ

to keep notation light - there are no other taxes). The government runs a balanced budget:

ρφ = τ.
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Generation A utility and consumption-savings problem:

Max
cA≥0,aA0

u(cA0 ) + v(1− nA0 ) + β
[
ρu(c̃A1 ) + (1− ρ)u(cA1 )

]
s.t. q0a

A
0 + cA0 ≤ nA0

cA1 ≤ aA0 + e

c̃A1 ≤ aA0 + e+ φ

(5.7)

c̃A1 represents consumption if the household retires. In that case, it receives pension payment. Else,
it only consumes its own savings and exogenous endowment. Utility function has expected utility
format.

Generation B faces conventional consumption savings-problem:

Max
cB≥0,aB1

u(cB1 ) + v(1− nB1 ) + βu(cB2 )

s.t. q1a
B
1 + cB1 ≤ nB1 − τL,1

cB2 ≤ aB1 + e

(5.8)

Market-clearing conditions (5.4)-(5.6) stay the same.
Example: no leisure value v = 0. Therefore: nA0 = nB1 = 1. Euler equations:

q0u
′(1) = β [ρu′(e+ φ) + (1− ρ)u′(e)]

q1u
′(1− ρφ) = βu′(e)

Expansion of the pension system (higher ρ or higher φ) reduces the demand for public bonds from
households in both generations, as they are left relatively richer when they are older. In equilibrium,
bond prices decline, interest rates increase.

Exercises
Exercise 5.1. Consider the basic overlapping-generations model with no government. Continue

to assume the linear production function f(n) = n, and unity wage rate. Assume u(c) = v(c) =
log(c).

(a) Given β and e, find equilibrium consumption levels and bond prices.

(b) Suppose the government imposes a lump-sum tax of τ1 consumption goods to households of
generation A in period one, and τ2 to generation B in period two. Both τ1 and τ2 can be negative,
in which case the government is transferring goods instead taxing them. Assuming the government
enters period zero with no debt, write down its sequential and present-value budget constraints.

(c) Assume the government transfers −τ1 > 0 goods to generation A households. Solve (a)
under the new fiscal policy. Provide an intuition as to why the allocation and price vectors differ.
Does Ricardian Equivalence hold?
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Exercise 5.2. In the context of the two-period unfunded pension system model, consider again
the case in which households don’t value leisure, n = 0. Suppose the government has decided on the
size τ of the pension system, but not on parameters ρ and φ. You can think that the government
is choosing between different eligibility criteria unrelated to economic factors.

(a) Parameters ρ and φ must satisfy ρφ = τ . How does the choice of ρ affect demand for public
bonds by generation B households and interest rate in period one?

(b) How does it affect the demand for public bonds by generation A households and interest
rate in period zero? You may assume that u′ is a strictly convex function; it satisfies:

u′(b) > u′(a) + u′′(a)× (b− a)

for a, b > 0. Provide an interpretation based on precautionary behavior, as studied in chapter 3.
(Hint: what happens when ρ = 1?)

Exercise 5.3. In this numerical exercise, we numerically solve the general equilibrium effects
of the introduction of a realistic unfunded pension system. Following the setup of chapter 2, firms
produce consumption goods using labor and physical capital through the production function

f(k, n) = kαn1−α.

Capital depreciates at a rate δ, and the expressions

rt + δ = α(kt−1/nt)α−1

wt = (1− α)(kt−1/nt)α
(5.9)

provide first-order conditions for optimality when firms do not profit. Since households do not work
in period two, r2 = −δ. There is no senior age endowment e.

As in the main text, senior households of generation A have a probability ρ of receiving a
pension installment of φ consumption goods. The installment is financed by a flat, marginal tax τ
on labor income (different from the lump-sum tax of the main text). The government initially has
no public debt, and adopts a balanced budget in all periods, which requires ρφ = τnB1 .

Using the end-of-period notation, generation A households enter period zero with a net wealth
of d−1 = k−1. The market-clearing condition in the capital market is

dt = kt t = 0, 1. (5.10)

Utility of generation A is similar to that of the text

u(cA0 ) + v(1− nA0 ) + βE
[
u(cA1 )

]
,
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with isoelastic u and v:

u(c) = c1− 1
γ − 1

1− 1
γ

and v(`) = `1− 1
ψ − 1

1− 1
ψ

.

The utility function of generation B is analogous. For the baseline calibration, use α = 0.5, β = 0.8,
δ = 0.1, γ = 0.5, ψ = 0.8, ρ = 0.5 and φ = 0.1. The initial stock of physical capital is k−1 = 1.

(a) Write the consumption-savings problem faced by households of generation A. Consider a
grid D of household net wealth points:

0.05 = d1 < d2 < · · · < d1000 = 0.6

Write a function that takes as given w0, r0, r1, ρ and φ, and returns the optimal choice of d0, cA0 ,
c̃A1 , cA1 and nA0 , by households of generation A.

To solve the problem, you need to compute the utility of selecting each candidate net wealth
position d ∈ D, and then choose the point that maximizes it. Hint: to compute the optimal labor
supply choice associated with a point d, use the function you wrote in Exercise 4.2. of chapter 4. It
needs to solve

w0u
′(w0n

A
0 + (1 + r0)d−1 − d0) = v′(1− nA0 ).

(b) Write the consumption-savings problem faced by households of generation B. Using the
same grid D, write another function, that takes as given w1, r1 and τ , and returns the optimal
choice of d1, cB1 , cB2 and nB1 by households of generation B. The algorithm should be similar to the
one you wrote in (a).

(c) You have solved households’ consumption-savings problems. Now, you need to find market-
clearing prices. By (5.9), wage and interest rates depend only on the capital-labor ratio knt = kt−1/nt.
It is therefore easier to search for two market-clearing capital-labor ratios kn0 and kn1, then the
four prices w0, r0, w1, r1. You also need to ensure that the pension system is budget-balanced
through proper selection of the tax rate τ . We group these variables in a single solution vector x:

x =


kn0

kn1

τ

 .

Adopt an iterative procedure. Start by guessing a solution vector x0 = [1, 1, 0]. In iteration i,
fix xi and solve households’ problems using (a) and (b). Use the market-clearing condition (5.10)
along with optimal labor supply to compute resulting capital-labor ratios:

k̂n0 = k−1

nAi0

k̂n1 = di0
nBi1

= ki0
nBi1
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(the i superscript indicates the iteration). Then, use the balanced-budget condition to find fiscally
sustainable pension benefits τ = ρφi/nBi1 .

Define x̂ = [k̂n0 k̂n1 τ̂ ]. If x̂ = xi, stop. You have found the solution vector, with equilibrium
capital-labor ratios and pension benefits. Otherwise, update the candidate solution vector using
damping

xi+1 = 0.5× x̂+ 0.5× xi.

and move to the next iteration. (Remember to include a maximum number of iterations in your
code to avoid an endless loop of the algorithm.)

(d) Repeat your numerical computation, but shut down the pension system: φ = 0. Your
solution vector should yield τ = 0. How does shutting down the pension system affect equilibrium
aggregate consumption, stock of capital, interest and wages? Explain intuitively.
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Chapter 6

Classical Theories of Monetary-Fiscal
Interaction

This chapter introduces money to our basic two-period economy. New concepts arise, such as the
inflation rate, nominal vs real interest, and the Fisher equation. Assuming that money enters
households’ utility function, we derive a microfounded version of the equation of exchanges - the
central equation of monetarism. In the policy front, we can start thinking about the interplay
between central bank activity (monetary policy) vs Treasury activity (fiscal policy). This interplay
involves whether fiscal policy is "active" or "passive", as well as the tension that stems from the
fact that monetary policy affects seignorage and thus fiscal revenues. A first attempt at an active
fiscal policy model leads to Sargent and Wallace’s celebrated unpleasant monetarist arithmetic.

6.1. Public Finances in the Presence of Currency
We change the nature of public bonds. Up until now, one public bond gave its holder the right to
one consumption good upon maturity. We call these real bonds. In this chapter, we study fiscal
policy in the presence of nominal bonds. Upon maturity, nominal bonds redeem for one unit of
currency. Currency (or money, or cash) is a commodity that only the government can produce, at
no cost. The price level Pt is the price of a consumption good in units of currency.

We use capital letters to denote nominal variables, and lowercase to denote real variables: Bt

denotes quantities of nominal bonds, as bt denoted real bonds previously. Qt is the price of a
nominal bond in cash units (similar to qt). The implied return on nominal bonds

1 + it = 1
Qt

is the nominal interest rate. The growth in the price level is the inflation rate:

1 + πt = Pt
Pt−1

.

The real interest rate is the return on an investment in the nominal bond in terms of real goods. As
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you can see below, it coincides with the ratio of nominal interest and next-period realized inflation:

1 + rt = 1/Pt
Qt−1/Pt−1

= 1 + it−1

1 + πt
.

The balance of money held by households in the beginning of period t is Mt, and mt = Mt/Pt
denote its real value (or the amount of consumption goods it can purchase). This is the Fisher
equation.

We return to our two-period setup, but it is easier for the exposition to discuss each period
separately.

6.1.1. Period One

At the beginning of period one, the government redeems B0 maturing bonds for currency, which
moves to the hands of households. Then, the government announces lump-sum taxes τ1 and public
spending g1, both stated in units of consumption goods. The real primary surplus is s1 = τ1 − g1.
Taxes and public spending are paid in cash. Therefore, by running a primary surplus, the government
removes money from circulation. The borrowing constraint faced by the government is

B0 = P1s1 + (M1 −M0) = P1s1 + ∆M1. (6.1)

(The world ends in t = 2, so households do not buy new bonds.) The interpretation of (6.1): the
cash the government uses to redeem bonds B0 (left side) is either removed from circulation by
surpluses P1s1 (right side) or added to households’ stock of money ∆M1 (right side).

The term ∆Mt is called seignorage. It is the revenue obtained by the government for having the
right to issue money. We can split the real revenue raised through seignorage between the growth
rate of real money stock and a term representing the inflation tax :

Seignorage = ∆Mt

Pt
= ∆mt︸ ︷︷ ︸

Real Money
Growth

+ πt
1 + πt

mt−1︸ ︷︷ ︸
Inflation

Tax

.

The inflation tax represents the loss in purchasing power of money over time.
Adding +M0 on both sides of (6.1) yields

V0 ≡M0 +B0 = P1s1 +M1. (6.1a)

V0 is the amount of circulating cash after the government redeems bonds at the beginning of period
one, comprising currency households brought from period zero M0, and new cash introduced from
bond redemptions B0. You can regard V0 as the "total" size of public debt. The government must
"repay" this amount either by running surpluses, or by relying on households to hold currency
at the end of period one. Why households would accept holding cash M1 > 0 when they do not
demand bonds B1 = 0 is the topic of the next section.
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6.1.2. Active Monetary vs Active Fiscal Models

The introduction of nominal debt blurs the connection between budget constraints and default-
averting surpluses. In the models with real debt considered in the previous chapters, public budget
constraints assigned a required level of primary surplus to avoid a public default:

b0 = s1. (6.2)

Since the government cannot create consumption goods, it must tax households to procure them, and
then repay bondholders. Nominal debt, on the other hand, is redeemed for currency, a commodity
the government can create and thus never needs to default on - regardless of s1. Therefore, in
principle, there is no minimal primary surplus the government needs to announce to prevent a
default. At the beginning of period one, the government redeems $10 dollars in debt (or $100, or
$1,000) by issuing currency, and then announces taxes of one good per household (or two, or three).
Cash obligations do not restrict surpluses.

The budget constraint does constraint surpluses, given the price level. The "given the price
level" clause is a major difference between the purely real economy models of the previous section,
and the monetary models we study in this one. To understand that difference, divide both sides of
(6.1) by the price level:

B0

P1
= s1 + ∆M1

P1
. (6.1b)

Real debt = real public income. Comparing the budget constraint in the monetary model (6.1b)
with its real-model counterpart (6.2), we see two differences. First is the seignorage term on the
right, which we discuss later. Second, and most importantly, the price level P1 now shows up on
the denominator on the left-hand side, which makes real debt no longer a predetermined variable.
A higher price level in period one reduces the real value of nominal bonds. The government owes
less to bondholders, in terms of consumption goods. In that case, the budget constraint (6.1b) says
that the associated primary surplus (plus seignorage) is smaller.

Whether (6.1b) pins public revenue given prices, or prices given public revenue is a question of
large debate in the literature, and divides the set of monetary-fiscal models in two. Active monetary,
passive fiscal models have been more common. In this class of models, the government observes
the price level P1 (whose equilibrium value is determined elsewhere in the model), and announces
enough surpluses to guarantee that the budget constraint (6.1b) holds. The reason behind the
name "active monetary" will become clear when we discuss money demand and the price level
in equilibrium. Active fiscal, passive monetary models are the basis for the fiscal theory of the
price level, a (mostly) more recent approach. In these models, the government announces primary
surpluses regardless of the price level - we have seen that it can do this. Households’ willingness
to hold on to cash, and their own budget constraint then imply that the equilibrium price level
satisfies the public budget constraint (6.1b).

In this section, we focus on active monetary models. We study the fiscal theory of the price
level in the next chapter.
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6.1.3. Period Zero

We move one period backwards. In period zero, the story is similar. The key difference from period
one is that, in period zero, the government can sell nominal debt - which also removes money from
circulation. Households start with M−1 units of currency and B−1 nominal bonds. They pay Q0B0

in cash to the government in exchange for B0 public bonds. The budget constraint in period zero
becomes

B−1 = Q0B0 + P0s0 + ∆M0. (6.3)

On the left side, currency put in circulation through bond redemption; on the right, where it flows
to: new bond purchases, tax payments (net of public spending), or households’ pockets. Like before,
we can re-write this budget constraint in terms of the total size of government debt after bond
redemption, Vt = Bt +Mt:

V−1 = Q0V0 + P0s0 + (1−Q0)M0. (6.3a)

The government can "repay" debt by issuing more debt at a price Q0 or by running a primary
surplus. The last term

(1−Q0)M0 = i0
1 + i0

M0

represents the convenience yield obtained by the government for "selling" money, a debt-like asset
that pays no interest. When i0 = 0, bonds and currency become economically identical, and the
convenience yield vanishes.

6.2. Money Demand and the Equation of Exchanges

6.2.1. Households and Preference for Liquidity

In frictionless models, households do not demand currency, because currency does not pay interest.
Nonzero demand for currency therefore requires the existence of frictions in the economy that
renders money valuable. These frictions are usually motivated by the idea that, in practice, money
has some special "quality" that facilitates trade. If you inadvertently come cross that handcrafted
bow tie you were looking for, you cannot instantly sell your bonds to pay the tailor (or just transfer
them to him/her); you must have money on your wallet. Admittedly, as payment technologies
evolve, justifying such frictions becomes harder. Nevertheless, because MV = PY continues to be
heavily employed in the academic literature, we proceed under the assumption that these frictions
are well justified.

Capture households’ preference for liquidity through the money-in-the-utility function formula-
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tion. Endowment economy, no production. Natural borrowing limit.

Max
c,M,B0

u(c0) + h(m0) + β [u(c1) + h(m1)]

Q0B0 +M0 + P0c0 ≤ B−1 +M−1 + P0(y0 − τ0)
P1c1 +M1 ≤ B0 +M0 + P1(y1 − τ1)
c,M ≥ 0.

(6.4)

Function h satisfies usual assumptions: twice differentiable, increasing and concave. Recall that
mt = Mt/Pt: households have preferences for real holdings of money.

First-order condition for public bonds:

Q0u
′(c0) = β

u′(c1)
1 + π1

=⇒ u′(c0) = β(1 + r1)u′(c1) (6.5)

Equation (6.5) is the same first-order condition we find in the real-bond model.
First-order condition for money balances in period zero:

u′(c0) = h′(m0) + β
u′(c1)
1 + π1

(6.6)

Interpretation: marginal utility cost of increasing money balance (left side) equals marginal utility
benefit (right side).

First-order condition for money balances in period one:

h′(m1) = u′(c1) (6.7)

From (6.5) and (6.6):
h′(m0) = (1−Q0)u′(c0) (6.8)

The marginal utility of one additional real unit of currency equals the utility cost of the convenience
yield. Like we did for public budget constraints, we can re-write households’ constraints and its
entire optimization problem in terms of total assets Vt = Bt +Mt and the convenience yield, as
follows.

Max
c,M,B0

u(c0) + h(m0) + β [u(c1) + h(m1)]

Q0V0 + (1−Q0)M0 + P0c0 ≤ V−1 + P0y0

P1c1 +M1 ≤ V0 + P1y1

c,M ≥ 0.

(6.9)

6.2.2. Central Bank and Equilibrium

The monetary authority (or the Central Bank) inelastically supplies money in both periods, M0

and M1. We also fix public spending g, and assume passive fiscal policy: the government chooses
taxes τ to satisfy the budget constraint at the equilibrium price level.
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In equilibrium, yt = gt + ct. Therefore:

1 + r1 = 1 + i0
1 + π1

= u′(y0 − g0)
βu′(y1 − g1) (6.10)

h′(m0) = i0
1 + i0

u′(y0 − g0) (6.11)

h′(m1) = u′(y1 − g1) (6.12)

(in (6.11) we have replaced 1−Q0 = i0/(1 + i0)).
Expression (6.10) determines the real interest rate. Like in the real economies of the previous

sections, the interest rate is marginal rate of substitution between consumption in periods zero
and one. Importantly, Central Bank activity does not affect the real interest rate - a property of
models in which prices are flexible.

Expressions (6.11) and (6.12) are the first versions we encounter of the celebrated equation of
exchanges:

MtVt = Ptyt. (6.13)

As originally written down by Irving Fisher, the equation of exchanges (or simply MV=PY) posits
that demand for cash (M) balances is directly proportional to the nominal volume of transaction,
which we usually approximate using aggregate nominal income (Py). The scaling constant V is the
velocity of money. The name follows from the (somewhat loose) interpretation of the PY -to-M
ratio as the number of times agents use the same unit of currency to make a purchase.

Equation (6.12) pins down P1. Equation (6.11) jointly determines P0 and i0. The monetary
authority is not free to set both P0 and i0, since real interest rate is fixed. In models with price
rigidity, the Central Bank does yield power to affect real interest rates. Finally, the fact its choice
of money supply determines the price level justifies the designation of the model as an "active
monetary" model.

While our framework has microfounded some version of MV = PY , equation (6.11) does not
necessarily lead to a version of (6.13). The exercises consider a particular case of isoelastic u and h
in which it does. Yet, in general case, (6.11) implies a positive relationship between real money
balances m0 = M0/P0 and real income y0 (even if the latter is shifted by public spending g0). Fixing
public spending, higher income y0 corresponds to higher consumption in equilibrium, therefore
wealthier households. Wealthier households demand more real money balances. Now you can see
how the money-in-the-utility-function formulation captures the idea that more income asks for
larger holdings of cash.

In the case of period zero, expression (6.11) also shows that, for a fixed y0, demand for real
holdings of currency is decreasing (thus "velocity" is increasing) in the nominal interest rate.
Intuitively, higher interest rates increase the opportunity cost of holding on to currency.

Monetarism and backing theories
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6.2.3. Seignorage

Central bank activity and seignorage as a means of financing government deficits. Real seignorage
depends on households’ acceptance of cash holdings (velocity). Start with a general equation of
exchanges, in which velocity depends on nominal interest:

MtV (it) = Ptyt

Taking difference (assume fixed interest rate it = i):

∆(MtV (i)) = ∆(PtYt) =⇒ V (i)∆Mt = Pt∆yt + yt∆Pt

Let gt = ∆yt/yt−1 be real income growth. Manipulating the expression above yields

V (i)∆Mt

Ptyt
= gt

1 + gt
+ πt

(1 + gt)(1 + πt)
.

We can roughly simplify the denominators on the right to one, which leads to the convenient
expression

∆Mt

Ptyt
= gt + πt
V (r + πt)

. (6.14)

The left side of the (6.14) is real seignorage, as a share of aggregate real income.
How does the seignorage revenue depend on the inflation chosen by the Central Bank? We take

logs (we are interested in relative, not absolute changes), and differentiate (6.14) with respect to πt
to find

∂ logMt/(Ptyt)
∂πt

= 1
gt + πt

− ∂ log V (r + πt)
∂πt

(6.15)

If the elasticity of money velocity is large, more inflation can reduce the seignorage term, as
households run from cash - and that effect exceeds the inflation tax.

To find the revenue-maximizing inflation rate, equate (6.15) to zero. We find

gt + πt =
[
∂ log V (r + πt)

∂πt

]−1

.

The revenue-maximizing inflation rate depends negatively on the elasticity of velocity.

6.3. Cagan’s Model of Hyperinflations
We begin to study monetary-fiscal interactions.

Cagan (1956) considers hyperinflation events, which he defines as monthly inflation rates
superior to 50%. Cagan argues that, during hyperinflation episodes, the equilibrium values of real
variables are independent of variation in the price-level. In the context of a monetary model, one
can then abstract from variation in the real interest rate rt and in aggregate income yt.
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Cagan posits a (log) money demand equation of the format

m̂t + ηit = pt, (6.16)

where m̂t = logMt (not to be confused with mt = Mt/Pt), and pt = logPt. The term ηit captures
money velocity, which is a function of nominal interest, and hence of real interest (constant, we
can normalize to zero) and expected next-period inflation πet+1. Parameter η is the elasticity of
(log) money velocity with respect to inflation ∂ log V/∂π.

Cagan assumes adaptive expectations, meaning that expected inflation depends on past inflation
rates. For simplicity, we assume that it coincides with current inflation:

πet+1 = pt − pt−1.

(Since pt is log price level, pt − pt−1 ≈ πt.) Equation (6.16) becomes

m̂t + η(pt − pt−1) = pt. (6.17)

or, yet:
pt = η

η − 1pt−1 −
1

η − 1mt.

If η > 1 (velocity highly elastic), inflation can be driven by momentum. Inflation leads to an increase
in velocity, which induces more inflation. Additionally, as velocity grows, seignorage generates less
and less revenue for the government.

6.4. Unpleasant Monetarist Arithmetic

Through their seminal paper, Sargent and Wallace (1981) were the maybe first to consider the
implications of active fiscal policy to price level determination. Active fiscal policy means that,
instead of adjusting surpluses s to satisfy (6.1b), the government fixes s. To prevent a government
default, the Central Bank at some point must increase money supply enough to generate large
enough seignorage revenues. The "unpleasant" tautology follows from the fact that, the longer the
Central Bank waits to monetize public debt, the more inflation is required to prevent the default.

Like the original paper, it is easier to cast the model using real debt (although the concepts
hold with nominal debt too - see the exercises). Real debt is paid with currency at the beginning
of each period, so the government’s budget constraints are

P0b−1 = P0q0b0 + P0s0 + ∆M0

P1b0 = P1s1 + ∆M1.
(6.18)

The present-value budget constraint is

b−1 =
(
s0 + ∆M0

P0

)
+ q0

(
s1 + ∆M1

P1

)
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Replacing the expression for seignorage (6.14) yields:

b−1 =
(
s0 + ∆m0 + π0

1 + π0
m−1

)
+ q0

(
s1 + ∆m1 + π1

1 + π1
m0

)
. (6.19)

Sargent and Wallace assume the equation of exchanges (6.13) holds in both periods, with the
same constant velocity V0 = V1 and aggregate output y0 = y1. Consequently, demand for real
holdings of money is constant: ∆m0 = ∆m1 = 0, and seignorage coincides with the inflation tax.

We start with an equilibrium (M,P ), and consider a different equilibrium (M ′, P ′). In this
second equilibrium, the Central Bank decides to reduce money supply in period zero: M ′

0 < M0.
Active fiscal policy remains unchanged: s′ = s.

1. By MV=PY, P ′0 < P0, so π′0 < π0.

2. Lower inflation means lower inflation tax in period zero. Given constant surpluses, public
debt at the end of period zero is larger in the second equilibrium.

3. With a larger debt, in period one the Central Bank must raise money supply to generate
enough seignorage revenues and prevent a default: M ′

1 > M1.

4. By MV=PY, P ′1 > P1.

Lower money supply in period zero reduces inflation in period zero, but increases it in period
one. Additionally, (6.19) and q0 < 1 imply that the increase in inflation rate in period one required
to prevent a default is larger than its period-zero decline. The longer the Central Bank takes to
monetize debt, the larger the required issuance of money - and thus the larger the ensuing rise in
inflation.

Exercises
Exercise 6.1. Suppose the Central Bank announces at the beginning of period zero that it

will double money supply, compared to what agents previously expected: M ′ = 2×M . Based on
the micro-founded money demand equations (6.11) and (6.12), how will the new policy affect: (a)
the price level in each period; (b) the inflation rate in each period (you can take as given the price
level in t = −1, P−1); (c) the interest rate in period zero i0?

Exercise 6.2. Suppose g0 = 0. Assume u and h are both isoelastic period utility functions,
i.e.:

u(x) = h(x) = x1− 1
γ − 1

1− 1
γ

.

(a) Using equilibrium condition (6.11), and define a velocity of money variable V0 that satisfies
the traditional equation of exchanges

M0V0 = P0y0.
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When we increase the elasticity of intertemporal substitution γ, does velocity get more or less
responsive to variation in the nominal interest rate?

(b) Repeat (a) for the equilibrium condition (6.12). What is the velocity of money in period
one?

Exercise 6.3. Suppose u(c) = log(c) and h(m) = log(m). Use your result from exercise
Exercise 6.2. to compute money velocity. Let 1 + gM = M1/M0 be money supply growth. Use
equilibrium conditions (6.11)-(6.12) to compute nominal interest rate i0 as a function of real interest
r1 and gM .

Exercise 6.4. Cagan’s model with forward-looking expected inflation (Kenneth and Rogoff).

Exercise 6.5. Consider the unpleasant arithmetic environment, and the experiment of a money
supply reduction in period zero by the Central Bank, but suppose that debt is nominal instead of
real.

(a) How does the present-value budget constraint (6.19) change if we consider nominal instead
of real debt?

(b) Suppose that initially (i.e., before the announcement of the change in money supply) the
equilibrium values of fiscal surpluses, money stock and price level are the same, in t = 0 and t = 1.
The reduction in money supply calls for a greater or a smaller increase in period-one price level?
Explain intuitively.
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Chapter 7

The Fiscal Theory of the Price Level

This section introduces the fiscal theory of the price level, according to which, with active fiscal
policy, demand for money (and hence public bonds) does not require the presence of economic
frictions. The main equation of the fiscal theory is the valuation equation of public debt, which
links current and expected future primary surpluses to the price level, and hence inflation. We
continue to distinction between monetary policy (which governs expected inflation) and fiscal policy
(which governs unexpected inflation). Models with price-level targets and/or long-term debt allows
contractionary monetary policy to reduce inflation - no Phillips curve required!

7.1. The Basic FTPL Model

This chapter is mostly based on Cochrane (2023).
As in the previous chapter, it is easier to first discuss the fiscal theory of the price level in a

one-period setting, and then generalize the intuition to multiple periods. So, we start by focusing
on period one.

7.1.1. Period One: Fiscal Theory in a One-Period Setup

We consider the same environment of chapter 6. Households bring B0 nominal public bonds from
period zero. At the beginning of period one, the government redeems these bonds for currency,
which moves to the hands of households, and announces a lump-sum tax of τ1 > 0. For simplicity,
there is no public spending. The market for consumption goods opens, and the price level P1 forms.
Finally, households pay taxes using cash.

Fiscal policy is active. The government chooses a fixed primary surplus that does not respond
to other economic variables. Because it does not demand goods, the primary surplus is s1 = τ1 > 0.
There is nothing wrong or unnatural in having the government choose real taxation independently of
public nominal debt. Because nominal bonds redeemed for currency - a commodity the government
can create at zero cost -, debt obligations do not constraint real surpluses. The government’s budget
constraint

B0 = P1s1 + ∆M1, (7.1)
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has a different interpretation, which is: the cash used to redeem bonds B0 must either be retired
by public taxation P1s1 or voluntarily absorbed by households ∆M1 = M1−M0 (Mt denotes stock
of currency).

Moving to the household side, we adopt an environment similar to that of the previous section,
except that households have no preference for liquidity. We want what one can call a "neoclassical"
model, in which money has no special property. As such, contrary to chapter 6, households’ utility

u(c0) + βu(c1)

does not depend on real money holdings mt = Mt/Pt. Other than that, each household has a fixed
endowment of y1 consumption goods, and chooses its consumption level c0 and money holding M1

subject to the budget constraint

P1c1 + ∆M1 = B0 + P1y1 − P1s1. (7.2)

The right-hand side of (7.2) implies that the household cannot spend the entirety of its available
cash B0 + P1y1. At the end of period one, it must have P1s1 units of currency left to pay out the
government.

We are interested in determining the equilibrium price level P1. In equilibrium, the market for
goods clears: c1 = y1. In addition, because money offers no value to households, their demand
for cash is zero: M1 = 0. For a similar reason, households do not bring money from period zero
M0 = 0. Hence, ∆M1 = 0. Replacing these conditions into (7.2) leads to an expression that pins
down the equilibrium price level:

B0

P1
= s1. (7.3)

The emergence of the equilibrium price level as the solution to (7.3) follows directly from
household optimal behavior, and equilibrium in the goods market. When acting on the market for
goods, households choose to set aside exactly the volume of cash necessary to pay taxes.

B0 + P1(y1 − c1)︸ ︷︷ ︸
Currency left after

market for goods closes

= P1s1.

Setting aside less than P1s1 units of currency forbids a household from paying all due taxes. Setting
aside more than P1s1 forces the households to hold currency, which offers no value. And what is the
volume of currency households set aside in the market for goods? Equilibrium in the goods market
implies that any volume of currency accumulated by a household for selling a good must be spent
by another household who buys it: P1y1 = P1c1. Hence, the volume of currency in the pockets of
households after the market for goods closes equals B0 - the volume of currency introduced by the
government through bond redemption. Equation (7.3) emerges.

We can interpret the equilibrium in terms of movements in "aggregate demand". Let P1 be
the solution to (7.3). If the price level was P ′1 > P1, so that B0 < P ′1s1, households would not
have enough currency to pay taxes, which would force them to reduce demand for goods. As all
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households attempted to reduce consumption, the price level would decline until it reached P1. The
analogous story explains why P ′1 < P1 cannot be the equilibrium price level.

We can also interpret the equilibrium in terms of a nominal volume relative to a real volume.
The fiscal theory of the price level is a backing theory, similar to active monetary models based
on MV=PY. The nominal volume is the stock of nominal debt B0. The real volume is the flow of
(real) primary surpluses. For the same announcement of primary surpluses, larger stocks of nominal
debt lead to greater price levels.

7.1.2. Period Zero: Fiscal Theory in a Two-Period Setup

We move one period backwards to understand price level formation in a dynamic model. The price
of a nominal bond in period zero is Q0. The budget constraints for the government and households
become

Q0B0 + P0s0 + ∆M0 = B−1 (7.4)
Q0B0 + P0c0 + ∆M0 = B−1 + P0y0 − P0s0. (7.5)

In equilibrium, y0 = c0 and M−1 = M0 = 0. Constraints (7.4) and (7.5) lead to the following flow
equation for real public debt:

B−1

P0
= s0 + Q0B0

P0
(7.6)

Like in period one, surpluses soak up currency, but now so do the sales of new public bonds, which
raises Q0B0 units of currency in revenues to the government.

The usual household consumption-savings problem leads to the Euler equation

u′(c0)Q0 = β
P0

P1
u′(c1).

Henceforth, we assume constant output y0 = y1, which implies c0 = c1 and that the real interest
rate is 1/β in equilibrium. (If you find y0 = y1 too hard of an assumption, call 1/β the real interest
rate and proceed with no restrictions on y.) In any case, the equilibrium price of the nominal bond
is:

Q0 = 1
1 + i0

= β
P0

P1
. (7.7)

Replacing (7.7) in the flow equation (7.6) yields

B−1

P0
= s0 + βs1. (7.8)

Equation (7.8) generalizes (7.3). It is known as the valuation equation of public debt. Given the
sequence for primary surplus s and the predetermined size of public debt B−1, it determines the
price level in period zero P0.

Equilibrium in period zero translates the same intuition as that of period one. Households run
towards or away from currency until they have just enough to pay for their taxes. That is the
interpretation of equation (7.6) - note that (7.6) is an equilibrium conditions, not a budget constraint.
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Such household behavior, coupled with a predetermined volume of public debt, determines the
price level. The key difference we find in period zero is that households also set aside cash to pay for
new nominal bonds. How much? The equilibrium we computed in period zero shows that the real
revenue raised by the government with new bond sales equals βs1. Hence the connection between
period-one surpluses and period-zero price level.

7.1.3. Fiscal and Monetary Policy

Fiscal policy: changes to s = (s0, s1) lead to changes in the price level in both periods.
Connection between debt/deficits and inflation? Not necessarily: households can expect future

surpluses that repay large debt at a given price level. Be careful with the branding "active fiscal"!
Monetary policy: changes to B0 unaccompanied by changes to primary surpluses. Since

Q0B0

P0
= βs1,

and since P0 is determined by the valuation equation (7.8), if the Central Bank sells additional
units of B0, then Q0 must fall to the point that bond sales revenue Q0P0 remains unchanged. Thus,
the Central Bank faces a unit-elastic demand for public bonds. Instead of fixing bond sales B0, it
can fix Q0 (and nominal interest rate) and elastically offer B0 - a horizontal supply curve of public
bonds.

Effect of bond sales on inflation? The Fisherian effect: higher nominal interest leads to higher
inflation. Intuition?

7.2. Expected and Unexpected Inflation

Environment with surplus risk. Primary surplus (in both periods) is a random variable which
households do not know in the previous period.

In the presence of uncertainty, the price of a nominal bond becomes

Q0 = 1
1 + i0

= βE0

[
P0

P1

]
. (7.9)

Replacing (7.9) on (7.6) gives a new version of the valuation equation:

B−1

P0
= s0 + βE[s1]. (7.10)

Equation (7.9) shows that monetary policy - the setting of nominal interest by the Central
Bank - pins down expected inflation.

Let
∆Et = (Et − Et−1)
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be the innovation operator. For a random variable whose value is unknown prior to period T ≥ t,

∆EtxT = EtxT − Et−1xT

captures the revision in expectation of xT . In particular, when T = t:

∆Etxt = xt − Et−1xt

captures the unexpected component of the realization of xt relative to expectation in t− 1.
Taking the innovation operator in (7.3):

B0

P0
∆E1

(
P0

P1

)
= B0

P0
∆E1

( 1
1 + π1

)
= ∆E1s1

Unexpected inflation in period one is pinned down by fiscal policy. The same is true in period zero:

B−1

P−1
∆E0

( 1
1 + π0

)
= ∆E0s0 + β∆E0s1.

7.3. A Fiscal Theory of Monetary Policy
We explore two extensions that make monetary-policy interactions more interesting.

7.3.1. A Price-Level Target

Instead of fixing a level of primary surplus s1, the government observes the level of debt in period
zero and establishes a price level target P ∗1 . It then sets primary surplus to guarantee that price
level in equilibrium:

s1 = B0

P ∗1
(7.11)

In period zero:
B−1

P0
= s0 + β

B0

P ∗1
. (7.12)

Given the price target, the government can finance a period-zero deficit (s0 down) by issuing new
bonds (B0 up) without affecting the price level. The increase in bond issuance comes accompanied
by the implicit promise of an increase in surpluses in period one, so that (7.11) holds.

Monetary-fiscal interaction: suppose the Central Bank raises B0 to reduce bond price Q0.
In period one, the government raises s1 accordingly: price level P ∗1 unchanged. Thus, with the
price-level target, monetary policy interacts with fiscal policy! In period zero, P0 declines by (7.12).
Inflation from period zero to one increases, implying that nominal interest increases as well. But
the fact that the price level declines in period zero gives a perhaps comforting result: an interest
rate rise reduces current inflation P0/P−1.
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7.3.2. Model with Long-Term Debt

Second pathway to generate higher interest leading to lower inflation. Instead of one-period bonds
only, bonds can have any maturity. Qn

t is the price of a bond that promises the delivery of one unit
of currency after n periods. (So far, we have been working only with Qn=1

t .)
The government cannot sell bonds maturing after period one. Therefore, equilibrium condition

(7.3) continues to hold. In period zero, the flow equation of government debt is

B1
−1 = P0s0 +Q1

0(B1
0 −B2

−1)

The parenthesis term on the right represents the amount of currency the government retires by
selling additional nominal bonds maturing in period one. We can re-write it in real terms

B1
−1 +Q1

0B
2
−1

P0
= s0 + Q1

0B
1
0

P0
(7.13)

Replacing (7.3) gives the new version of the valuation equation in period zero:

B1
−1 +Q1

0B
2
−1

P0
= s0 + βs1 (7.14)

The left-hand side contains the real market-value of public debt in the beginning of period zero.
Suppose that the Central Bank fixes a target for Q1

0 (interest rate), and sells one-period bonds
accordingly. Primary surpluses s remain constant. What are the effects of an increase in nominal
interest, or a decline in Q1

0? Higher interest reduces the price of nominal bonds, and hence the
market value of public debt - the left-hand side of (7.14). This is the major difference compared
to the one-period bond case. The equilibrium price level in period zero P0 declines. We again see
tighter monetary policy leading to a decline in current inflation.

Nevertheless, to raise nominal interest, the Central Bank needs to sell more one-period bonds
(an exercise asks you to prove that claim), leading to higher inflation in period one. Higher inflation,
in turn, validates the Fisher relationship.

7.4. Observational Equivalence
Is it possible to test active vs passive fiscal policy? To answer that question, we compare the
equilibrium conditions that arise from the active monetary models of chapter 6 with the equilibrium
conditions from the FTPL. To do a valid comparison, we need to relax the assumption the
households do not value currency. Therefore, consider that households have preferences and solve a
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consumption-savings problem similar to those assumed in the previous chapter:

Max
c,M,B0

u(c0) + h(m0) + β [u(c1) + h(m1)]

s.t. Q0B0 +M0 + P0c0 ≤ B−1 +M−1 + P0(y0 − τ0)
M1 + P1c1 ≤ B0 +M0 + P1(y1 − τ1)
c,M ≥ 0.

(7.15)

Function u and h satisfy the usual assumptions (increasing, concave, twice differentiable). We
call mt = Mt/Pt real money holdings. The government charges lump-sum taxes τ = (τ0, τ1) and
demands g = (g0, g1) consumption goods in the market. The difference s = τ − g is the primary
surplus series.

Computing the first-order conditions of problem (7.15) and imposing that all markets clear
yields the equilibrium conditions:

u′(y0 − g0) = β(1 + r1)u′(y1 − g1) (7.16)

h′(m0) = i0
1 + i0

u′(y0 − g0) (7.17)

h′(m1) = u′(y1 − g1) (7.18)

Equations (7.16)-(7.18) are the same equilibrium conditions as (6.10)-(6.12). Since budget con-
straints are also identical in both models, we conclude that equilibria generated by active monetary
and active fiscal models are the same. This result is referred to as observational equivalence.

Active fiscal: B/P = PV (s) determines the price level. The Central Bank provides an "elastic"
currency, to satisfy trading needs. Active fiscal: The Central Bank fixes the supply of money, and
MV = PY determines the price level. The government chooses surpluses to satisfy B/P = PV (s)
at the price level effectively set by the Central Bank.

Exercises
Exercise 7.1. Public primary surplus in period one follows the distribution below.

s1 =

ȳ1 + z with prob. 1
2

ȳ1 − z with prob. 1
2

In period zero, the government inherits a debt of B−1 nominal bonds, and charges a deterministic
surplus of s0 consumption goods. Compute the price level in period zero P0, expected period-one
inflation E0P0/P1 and the unexpected component of inflation in period one ∆E0(P0/P1).

Exercise 7.2. Consider again the environment with long-term debt. We want to show that an
increase in nominal interest lowers current inflation, but raises future inflation.

(a) Assume B1
−1 > 0. Use equation (7.14) to argue that, as the Central Bank raises nominal

interest, Q1
0/P0 falls.
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(b) Compute the real revenue raised by the government for selling new debt and explain your
answer. To sustain a higher nominal interest, does the Central Bank sell more or less one-period
debt in period zero?

(c) Use the valuation equation to argue that, after falling in period zero, inflation increases in
period one.

Exercise 7.3. (Stock as Money.) The equilibrium condition (7.3) that yields the price level
in a FTPL model is an instance of an asset pricing equation: asset price = discounted dividends.
Primary surpluses act like "dividends" to public bonds, as bondholders can use them to pay for
taxes. The higher the taxes (or primary surplus), the more valuable the nominal bond becomes. To
formalize this analogy, in this exercise we consider an alternative monetary model, in which agents
use stocks of a representative firm as currency.

There is no government. Each household has access to yt consumption goods in the form of
home production. The representative firm owns a technology that freely yields dt consumption
goods per period - this is known as a Lucas tree, following Lucas (1978). The firm sells these goods
to households, in exchange for its own stock. Households also use stocks of the representative firm
to carry out trade among themselves. The price of one consumption good in terms of stocks is Pt.

(a) Write the market-clearing condition of the consumption goods market in each period.

(b) Suppose households enter period one with X0 stock units. Write the household’s budget
constraint in period one, and then in period one. Importantly, there are no stock splits or repurchases
between periods zero and one. If the household ends period zero with X0 stocks, that is the amount
of stock it will begin period one with.

(c) Using the utility function u(c0) + βu(c1), where u is concave, differentiable and increasing,
find the Euler equation for firm stocks. Then, assuming that the aggregate endowment series y + d

is constant, show that
1
P0

= β
1
P1
. (7.19)

Intepret the equilibrium condition above.

(d) Impose the market-clearing conditions and (7.19) on households’ budget constraints to find
the new valuation equations determining the price level:

X0

P1
= d1 and X−1

P0
= d0 + βd1

The stock price in terms of goods - the inverse of the price level - coincides with discounted
dividends (interpreting as dividends the output sold by the firm, or its profit). Interpret why a
price level P ∗1 > P1 (where P1 is determined by the equation above) cannot be an equilibrium price.
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Chapter 8

Fiscal Multipliers

In this chapter, we revert back to real models, and study fiscal multipliers, the effect of changes in
public spending on aggregate output. We start with the Keynesian cross model, which posits that
marginal propensity to consume is constant, and that there is no supply restrictions. Higher public
spending leads to more production, income and consumption. The fiscal multiplier is superior
to one. Moving to a version of our two-period model with elastic labor supply and endogenous
production, we find a fiscal multiplier between zero and one: higher public spending increases
output, but crows out private consumption.

Fiscal multiplier = effect of a change in public spending or investment on national income/output.
We focus on public spending.

∆y
∆g

There is no single fiscal multiplier. In practice, multiplier depends on many factors, such as the
time schedule of the purchases and whether it is anticipated by households.

8.1. Keynesian Cross
The Keynesian Cross model is not a microfounded model, but it seems to base a lot of policy
discussions. The model posits a consumption function

c = α + φx, (8.1)

where c represents aggregate consumption and x represents aggregate income. Since the model is
static, we suppress time subscripts. Parameter φ represents the marginal propensity to consume
and plays a critical role in the model.

In equilibrium, aggregate output y equals the sum of household and public spending:

y = c+ g = α + g + φx. (8.2)

Assuming a closed economy, national income coincides with national output: y = x. We then have
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y

x (aggregate income)

y = x

45o

c+ g = α + φx+ g

g + ∆g > g

∆g

∆y > ∆g

Figure 8.1: Equilibrium in the Keynesian Cross Model

the following solution to the Keynesian Cross model:

y = α + g

1− φ. (8.3)

The black curves in figure 8.1 represent the equilibrium described by the model, and explains why
we call it Keynesian "Cross". We find the equilibrium in the point in which the aggregate demand
curve c+ g, expressed as a function of national income, crosses the identity line (income = output).

The fiscal multiplier is
∂y

∂g
= 1

1− φ.

Higher public spending ∆g boosts aggregate demand c+ g, which leads to an increase in output,
and therefore an increase in income x. In turn, higher income further boosts aggregate demand
c+ g through the household consumption term, as households spend a share φ of this new slice of
income. Higher demand further increases output, and the process continues. The overall effect on
output and income is

∆y = ∆g + φ∆g + φ2∆g + · · · = ∆g
1− φ.

The fiscal multiplier increases with propensity to consume φ. The red curve in figure 8.1 depicts
graphically the fiscal multiplier superior to one.

Criticisms:

· Constant marginal propensity

· Lack of constraints on aggregate supply

· Endogenous effects on wages and labor market

· Impact of potentially higher taxes to finance public spending?

· Dynamics? Public debt? Effect on interest rates?
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8.2. Equilibrium Model

8.2.1. Endowment Economy

The Keynesian cross model implicitly assumes that the economy disposes of enough production
capacity to fully attend the increase in aggregate demand following an increase in public spending.
The opposite is true in an endowment economy.

Consider the two-period model with endowments and no physical capital. Households receive yt
consumption goods each period. You can interpret the endowment as home production or as the
equilibrium result of households that do not value leisure. Obviously, the fiscal multiplier in the
endowment economy is zero.

But how does the equilibrium form? In period one, the household budget constraint

c1 = y1 − τ1 + b0 (8.4)

and government budget constraint
b0 = τ1 − g1 (8.5)

combine to form the market clearing condition y1 = c1 + g1. Public budget constraint (8.5) implies
that an increase in public spending announced in t = 1 requires an increase in taxation of similar
magnitude, ∆τ1 = ∆g1. In turn, higher taxes push down household consumption through (8.4),
∆c1 = −∆τ1. The overall effect on aggregate demand is zero: ∆c1 + ∆g1 = 0.

Fiscal multiplier also zero in t = 0. If higher spending is financed by ∆τ0 = ∆g0 > 0, same
story as in period one. If financed by higher taxation in period one ∆τ1, same effect −∆g0 on
consumption + households reduce savings. Higher interest follows from Euler Equation (see next
section). Higher interest does not result from different taxation timing (Ricardian Equivalence).

8.2.2. Basic Analytics with Elastic Labor Supply

Reference: Woodford (2011).
We keep the two-period structure. Since the derivation below holds equally to each period, we

drop subscripts to simplify notation.
Period utility function u(c) + v(1− n), where u and v are increasing, concave and differentiable.

Intratemporal optimality:
v′(1− n) = wu′(c) (8.6)

Production function f(n), concave. No physical capital. Firm optimization yields

f ′(n) = w. (8.7)

In equilibrium, y = c+ g. By (8.6) and (8.7), marginal utility of leisure equals marginal cost of
reducing labor hours, in utility units:

v′(1− n) = f ′(n)u′(y − g). (8.8)
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Let
h(y) = −v(1− f−1(y))

be a household’s "disutility of leisure" when the economy produces y consumption goods (the minus
sign reverses the utility of leisure interpretation). Differentiating h gives

h′(y) = v′(1− f−1(y))
f ′(f−1(y)) > 0.

Larger output demands lower leisure and thus lower utility derived from it. Since v and f are
both concave, h′′ > 0: producing more increases the marginal utility cost of further increasing
production.

We can re-express equilibrium condition (8.8) in terms of the marginal benefit and cost of
producing one more consumption good (rather than working one more hour), from the household
standpoint:

h′(y) = u′(y − g). (8.9)

Interpretation of (8.9)?
Define the elasticities

ηu = −u
′′(c)
u′(c) > 0 and ηh = h′′(c)

h′(c) > 0.

Differentiating (8.9) yields
ηh∆y = ηu(∆g −∆y)

which leads to the fiscal multiplier:

∆y
∆g = ηu

ηu + ηh
∈ (0, 1). (8.10)

Why fiscal multiplier ∈ (0, 1)? Intuition? What is wrong with ∆y/∆g = 0? What is wrong with
∆y/∆g = 1?

8.2.3. Real Interest and Policy Timing

The analytics above hold individually to periods zero and one. We now consider timing effects.
First case: Suppose that, in period zero, the government announces an increase in public spending
in period one, ∆g1 > 0, and that it will finance additional purchases through higher period-one
(lump-sum) taxes ∆τ1 > 0. How does that announcement change period-zero equilibrium?

Households anticipate lower consumption in period one ∆c1 < 0. In the new equilibrium:

q0u
′(c0) = βu′(c1 + ∆c1)

> βu′(c1)
(8.11)

In the new equilibrium in period zero, either: higher bond prices, lower consumption, or both.
Households attempt to increase savings to smooth consumption over time. Do they?
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Equilibrium in the goods market characterized by market clearing and labor supply optimality
condition:

f(n0) = c0 + g0 (8.12)
h′(1− n0) = u′(c0) (8.13)

(I assume an interior solution to labor supply choice, and continue to use the same definition of h.)
(8.12) establishes a positive relationship between consumption and labor hours. (8.13) establishes a
negative relationship. Therefore, there is, at most, a single solution to both the system (8.12)-(8.13).
In conclusion, equilibrium c0 and n0 are unchanged in the new equilibrium.

By (8.11), equilibrium requires ∆q0 > 0, and thus ∆r0 < 0. Intuitively, households increase their
demand for public bonds in an attempt to smooth the decline in public consumption stemming from
larger public spending in period one. But the stock of public bonds supplied by the government
remains unchanged, as one can verify by writing down the government’s budget constraint. The
bond market clears at a higher bond price, and lower interest rate.

In the endowment economy case, consumption in period one falls as much as the increase in
public spending, as households have no margin to increase labor hours. As a result, the economic
motive to increase savings in period zero is stronger, and the real interest rate falls by a larger
amount.

Second case: the government announces higher spending and taxes in period zero, ∆g0 = ∆τ0 > 0.
Fiscal policy unchanged in period one. Applying the same logic as before, ∆c1 = 0. From the Euler
equation

(q0 + ∆q0)u′(c0 + ∆c0) = u′(c1) = q0u
′(c0).

Since ∆c0 < 0, we have ∆q0 < 0. Note that higher equilibrium real interest rate does not arise as a
result of larger public debt. Public debt at the end of period zero b0 is unchanged. Instead, they
arise as a by-product of intertemporal consumption substitution by households.

Exercises
Exercise 8.1. Consider the equilibrium model again. Following the text’s example, consider

the period-zero effects of the announcement of higher public spending in period one. Suppose that
the government decides to finance higher spending through an increase in period-zero taxation,
while keeping taxes unchanged in period one. Through the lenses of the model, is it correct to
assert that households would, in that case, demand less bonds and, hence, that the effect over
bond prices would be dampened? Explain.

Exercise 8.2. Consider a version of the two-period model with physical capital and no labor
supply. The production function is f(k) = rk, where r > 0 is a fixed parameter. For simplicity,
suppose that physical capital fully depreciates from one period to the next (δ = 1, in the notation
of chapter 2). Taxes τt are lump-sum. Households’ utility function is

u(c0) + βu(c1),
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where u is increasing, differentiable and concave.

(a) Write the market clearing condition in the goods market in periods one and two.

(b) Write the Euler equation governing households’ choice of net wealth at the end of period
zero.

(c) At the beginning of period one, the government announces an increase in public spending
∆g1 > 0, fully funded by an increase in taxation. What is the change in aggregate output ∆y1?

(d) At the beginning of period zero, the government announces an increase in public spending
∆g0 > 0, fully funded by an increase in taxation. What is the change in aggregate output in period
zero ∆y0? Use the three equilibrium conditions you have derived to compute the fiscal multiplier
in period-one output ∆y1/∆g0. What is the intuition for a negative multiplier?

(e) At the beginning of period zero, the government announces an increase in perio-one spending
∆g1 > 0, fully funded by an increase in τ1. Use the three equilibrium conditions you have derived to
compute the fiscal multiplier in period-one output ∆y1/∆g1. What is the intuition for a multiplier
in the (0, 1) range?
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