
Fiscal Policy - Lecture Notes

Livio Maya
Insper



Chapter 1

The Basic Two-Period Model

1.1. Environment
The economy is populated by households and a government. They live for two periods,
t = 0 and t = 1, and trade identical consumption goods and public bonds. Public bonds
promise their holder one unit of the consumption good in the following period. There is
no money in this economy. Agents trade public bonds using consumption goods.

A word on notation: each variable in the model takes a value in period zero and a
value in period one, as indicated by their subscript. For example: x0 and x1. A process
that is a function of time is called a time series. When a symbol omits the subscript, it
refers to the entire time series vector: x = (x0, x1).

1.1.1. The Government

The government demands g = (g0, g1) consumption goods (i.e., g0 in period zero and
g1 in period one). To finance its purchases, it charges lump-sum taxes τ = (τ0, τ1) on
households. Households cannot avoid paying taxes. The pair g and τ characterize fiscal
policy in this model.

The government also raises revenue from selling new public bonds. In period zero,
the price of one bond is q0 units of the consumption good. Usually q0 < 1: you pay less
than one good in t = 0, to get one good in t = 1. As such,

1 + r0 = 1
q0

is the interest rate implied by the public bond’s price. In period one, agents have no
incentive to save since the world ends in the following period. Since bonds have no
demand, we can set its equilibrium price to zero: q1 = 0.
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We make two critical assumptions on government behavior. First, it can credibly
commit to fully repaying previously issued debt. "Credibly" means that households
believe in its commitment, and act accordingly. Second, the government indeed never
defaults.

The government brings to period zero a debt of b−1 bonds, and must therefore come
up with b−1 consumption goods to pay bondholders. To that end, it can either sell
new bonds b0 and raise q0b0 goods in revenue, or run a primary surplus. The primary
surplus is defined as the difference between tax proceeds and non-interest spending. In
this model, it corresponds to the quantity τ0 − g0. The government avoids a default in
period zero if

q0b0 + τ0 − g0 = b−1. (1.1)

The revenue from selling new bonds plus the revenue from taxes in excess of public
spending must be enough to redeem old bonds. Since the government will not default,
condition (1.1) represents a budget constraint. It restricts the government’s choice of
how much to tax, how much to spend, and how much to borrow.

Like in period zero, in period one the government again must pay bondholders,
which are now due b0 units of the consumption good. But, in period one, the government
cannot sell new bonds, since there is no demand for them (the bond price is zero q1 = 0,
so the government would not raise any revenues anyway). Therefore, to pay bondholders,
the government must run a primary surplus of b0 in period one:

τ1 − g1 = b0. (1.2)

Expression (1.2) is also a government budget constraint.

1.1.2. Households

The consumption good is non-durable (households can only enjoy them for a single
period), and perishable (agents cannot store them). Households value the consumption
good in the period they make use of them. The utility function

u(c0) + βu(c1)

captures households’ preferences over the amount consumed in period zero c0 and period
one c1. Period utility u(c) is an increasing, strictly concave and twice differentiable
function. Parameter β ∈ (0, 1] discounts the flow of future consumption, and therefore
captures households’ impatience.

Each household receives an endowment of y = (y0, y1) consumption goods. You can
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think of households producing these goods at home; we later model firms, production
and labor income more realistically.

We normalize the number of households to one, which avoids the introduction of
unnecessary notation. If each household consumes c0 goods, aggregate consumption will
be

c0 × Number of Households = c0 × 1 = c0.

The same symbol c0 represents both individual and aggregate consumption. Likewise,
(y0, y1) represent aggregate production in the economy.

In period zero, each household brings a−1 public bonds purchased in the previous
period. Since households and the government are the only agents in the model, we
restrict the number of bonds initially owned by households to coincide with the number
of bonds owed by the government: a−1 = b−1. Households redeem these a−1 bonds for
the same number of consumption goods. Add to that their after-tax income y0 − τ0

and we find the amount of available goods to each household in period zero. They can
use these goods to consume or purchase public bonds from the government. Let a0 be
the household’s choice of how many public bonds to purchase. There is no other asset
in the economy, so a0 also represents the household’s savings and its net wealth. The
following equation is the budget constraint faced by each household in period zero:

q0a0 + c0 ≤ a−1 + y0 − τ0. (1.3)

Equation (1.3) restricts the households’ decision of how much to consume and how
much to save in period zero. In period one, households redeem a0 public bonds, and do
not demand new ones, as the world ends thereafter. Hence:

c1 ≤ a0 + y1 − τ1. (1.4)

Households can borrow too, and the government can lend. While we have referred
to b0 as government "borrowing" and a0 as household "savings", nothing precludes these
variables from being negative (in which case, the household borrows and the government
lends).

Suppose households exhaust their available resources, that is, that their budget
constraints hold with equality. By equation (1.4), the maximum amount of goods a
household can repay from previously acquired debt is y1−τ1 (in that case, the household
would consume zero goods in period one, c1 = 0). If the household’s debt is larger than
y1 − τ1, the household defaults. Knowing that, potential lenders (other households or
the government) refuse to purchase bonds from (i.e., lend to) a household whose debt
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exceeds this value. Therefore, the largest debt any household can owe is y1 − τ1. We
incorporate this borrowing constraint in the model by establishing a lower bound a on
period-zero savings a0:

a0 ≥ a = −(y1 − τ1). (1.5)

(If you get confused with signs, think of an example; if after-tax income equals 5 goods,
then debt cannot be higher than 5, so net wealth cannot be lower than a = −5.)

Economists often refer to a household’s maximum repayable debt as its natural
borrowing limit. In our model, the natural borrowing limit is −a = y1−τ1. Other choices
of borrowing limit −a are possible, and often more realistic. However, adopting the
natural borrowing limit is a convenient starting point to analyze households’ allocation
decisions, because any choice that involves a positive consumption in period one (c1 > 0)
necessarily satisfies it. Consequently, if we prove that period-one consumption is not
zero, we can safely ignore the borrowing limit.

Households decide how much to consume c = (c0, c1) and how many bonds to
purchase (or issue) a0 taking into account their budget and borrowing constraints
(1.3)-(1.5). They take the price of public bonds q0 as given (i.e., they act competitively),
and attempt to get as much utility as possible from their choice. Therefore, the choice
of how much to consume and save solves the following utility maximization problem:

Max
c≥0,a0

u(c0) + βu(c1) (1.6)

s.t. q0a0 + c0 ≤ a−1 + y0 − τ0 (1.3)
c1 ≤ a0 + y1 − τ1 (1.4)
a0 ≥ a. (1.5)

Optimization problems similar to (1.6) are often referred to as consumption-savings
problems.

Since u is an increasing, strictly concave function, optimization (1.6) has a single
solution.1 In that solution, budget constraints (1.3) and (1.4) hold with equality -
otherwise households could raise consumption and get more utility. Let c(a−1; q0, τ) and
a0(a−1; q0, τ) be the pair of consumption levels (c0, c1) and public bond purchases that
solve (1.6). The arguments underscore how households’ choices depend on their initial
net wealth, the price of public bonds and taxes.

1We assume income y and initial wealth b−1 are large enough so that the household can choose
non-negative amounts of consumption goods.
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1.2. Present-Value Budget Constraints

1.2.1. Government and Fiscal Policy Sustainability

Let us return to the government’s budget constraints, repeated below for convenience:

q0b0 + s0 = b−1 (1.1)
s1 = b0. (1.2)

(s = τ − g is the primary surplus sequence). Equations (1.1) and (1.2) are examples of
sequential budget constraints ("sequential" because we have one of them in each period).

Sequential budget constraints focus on the interaction between surpluses and wealth.
But they also indirectly capture the possibilities of intertemporal allocation available
to the government. For example: if it wants to lower period-zero surpluses by one
(∆s0 = −1, ∆ means "a change in"), it must issue the necessary volume of new bonds
∆b0 = 1/q0 = 1 + r0; and then raise period-one surpluses by ∆s1 = ∆b0 = 1/q0 to pay
the additional debt.

It is often useful to represent the restrictions involving current and future surpluses
more directly, with a single expression. Replace (1.2) on (1.1) to get:

b−1 = s0 + q0s1. (1.7)

Equation (1.7) is the government’s present-value budget constraint. It immediately
shows that ∆s0 = −1 demands ∆s1 = 1/q0.

We say "present-value" because we are converting spending in different points in
time to their corresponding value in period zero. Indeed, the value in t = 0 of the
delivery of X goods in t = 1 is q0X, since any agent can purchase X bonds for that
amount, and get the X goods in t = 1.1 In that sense, we can regard q0 not only as
the price of public bonds, but also the price of period-one consumption c1 relative to
period-zero consumption c0.

We say "budget constraint" because expression (1.7) is a sufficient and necessary
condition to ensure that the government does not default. Conveniently, it does not
depend on the b0 term, only on fiscal policy objects τ and g through the surplus terms
s = τ − g. In that sense, the present-value budget constraint implies and is implied by
fiscal policy sustainability.

Let us check this important claim. If the government does not default, then s and
1This is a no-arbitrage argument: If the value was A > q0X, you could sell the period-one delivery

of X goods for A and purchase the required bonds for q0X to make a something-for-nothing profit.

5



b0 must respect the sequential budget constraints (1.1) and (1.2). Together, they imply
(1.7). Thus, no default =⇒ the present-value budget constraint.

In the opposite direction, suppose we have a surplus process s = (s0, s1) that satisfies
(1.7). We use the period-zero sequential budget constraint (1.1) to find the necessary
volume of bonds the government needs to issue:

b0 = b−1 − s0

q0
.

The above b0 ensures that the government does not default in period zero. Does it
default in period one? By assumption, the surplus pair satisfies (1.7). So:

b−1 = s0 + q0s1 =⇒ s1 = b−1 − s0

q0
= b0.

Since s1 = b0, period-one sequential budget constraint (1.2) holds. In conclusion, validity
of the present-value budget constraint =⇒ no government default.

1.2.2. Re-Stating Households’ Consumption-Savings Problem

Consider now the sequential budget constraints faced by households, expressions (1.3)
and (1.4). The conclusions we find above for the government apply somewhat similarly.
The sequential budget constraints imply the present-value budget constraint:

a−1 ≥ [c0 − (y0 − τ0)] + q0 [c1 − (y1 − τ1)] . (1.8)

Each term in brackets represents the household’s expenditure in excess of its after-tax
income (you can think of it as the household’s own "primary deficit"). The present value
of its excess consumption must be lower or equal to the initial wealth a−1. Intuitively,
if its exceeds a−1, then households default in period one.

Like in the government’s case, a consumption process c = (c0, c1) that satisfies the
present-value budget constraint (1.8) also satisfies the sequential budget constraints, if
we choose the right net wealth a0. For instance, we can use period-one budget constraint,
expressed with equality:

a0 = c1 − (y1 − τ1) . (1.9)

The equivalency between restricting households’ consumption choice using sequential
or present-value budget constraints opens the door to writing the consumption-savings
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problem (1.6) in terms of the c only:

Max
c≥0

u(c0) + βu(c1) (1.10)

s.t. a−1 ≥ [c0 − (y0 − τ0)] + q0 [c1 − (y1 − τ1)] (1.8)
(a0 =) c1 − (y1 − τ1) ≥ a. (1.5)

(We have used (1.9) to replace a0 in the borrowing constraint.1) The solution c(a−1; q0, τ)
to problem (1.6) also solves problem (1.10). We can then use (1.9) again to recover the
optimal demand for public bonds a0(a−1; q0, τ).

1.3. Ricardian Equivalence
In general terms, Ricardian equivalence is the proposition that households’ consumption
choices are unaffected by the timing of taxation. In this section, we model Ricardian
equivalency in our two-period setup and discuss which conditions are key to make it
hold. We start with a government that fixes a fiscal policy pair g and τ = (τ0, τ1). Fiscal
policy is sustainable, therefore the present-value budget constraint (1.7) is satisfied. We
can write it as:

[τ0 + q0τ1] = b−1 + [g0 + q0g1] . (1.11)

On the left, the present value of tax proceeds; on the right, the present value of outlays
divided between spending and old debt redemption. Households observe the path of
due taxes, and plan how much to consume c(τ) and how much to save a0(τ).2

Suppose that, still at the beginning of period zero, the government announces
a different, but still sustainable, path to lump-sum taxes, τ̂ = (τ̂0, τ̂1). Spending g

remains unaltered. How do households revise their consumption plans in response to
the government announcement? It turns out that, in the conditions of our two-period
model, they don’t: c(τ) = c(τ̂). We say that Ricardian equivalence holds.

The key to prove the proposition is to show that different but equally sustainable
taxation paths do not change the set of consumption levels affordable by households.
Formally, any c that satisfies the constraints of the consumption-savings problem (1.10)
under τ will continue to satisfy them under τ̂ , and vice-versa.

Let’s check that claim. We start with the present-value budget constraint (1.8),
1(1.9) is the only level of bond purchases consistent with a consumption choice because the

sequential budget constraints hold with equality in the solution of (1.6).
2In this section only, I ignore the arguments a−1 and q0 of the optimal solutions for brevity.
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which holds with equality. We can re-write it as:

[c0 + q0c1] + [τ0 + q0τ1]− [y0 + q0y1] = a−1.

The middle term on the left-hand side is the present value of charged taxes. Since both
τ and τ̂ are fiscally sustainable, and since g is unchanged, that quantity must stay
constant:

[τ0 + q0τ1] = [τ̂0 + q0τ̂1] = b−1 + [g0 + q0g1] .

Therefore, the household’s present-value budget constraint is unchanged.
Next, consider the borrowing constraint (1.5). Since we use the natural borrowing

limit, they read:

c1 − (y1 − τ1) = a0 ≥ a = −(y1 − τ1)
c1 − (y1 − τ̂1) = a0 ≥ a = −(y1 − τ̂1)

Both restrictions above are satisfied whenever c1 ≥ 0 (this is how we define the natural
borrowing limit!). Hence, the borrowing limit is effectively unchanged.

Since the restrictions of the consumption-savings problem (1.10) remain the same,
the optimal level of consumption cannot be different. In conclusion, c(τ) = c(τ̂).

1.3.1. Interpretation

The central idea behind Ricardian equivalence is the fact that households understand
how a one-dollar reduction in charged taxes today (or a standalone one-dollar transfer)
must be followed by a one-dollar increase plus interest tomorrow (and vice versa).
Being the household, you can save the extra dollar, earn the interest, and duly pay
the higher tax tomorrow. No reason to change the groceries list. In that sense, critics
of transfer-based programs of fiscal "stimulus" often rely on the Ricardian equivalence
result as a theoretical basis for their skepticism. Still, it is critical to understand what
the proposition says and what it doesn’t.

One could precisely summarize what Ricardian equivalence does say as follows:

Household’s consumption demand curve does not depend on the timing of lump-sum
taxes.

The two emphasized terms are key. "Timing" means when, not how much. Ricardian
equivalence does not say that households do not respond to different taxation schemes. If
the government halves taxes today but promises the same level of taxation in the future,
households do use the additional resources to raise consumption. If the government

8



announces higher taxes tomorrow, but no transfers today, then households save some
more. (Note however that the government exhausts its resources; thus an increase
in overall taxes for instance must lead to an increase in spending g too. See (1.11).)
"Lump-sum" means that the proposition excludes taxes that depend on households’
actions, like income, consumption and corporate taxes. Unlike these alternative forms of
taxation, lump-sum taxes do not change the marginal benefits of these actions; hence,
they do not induce changes in household behavior other than because they get wealthier
or poorer.

1.3.2. Critical Assumptions

According to the Ricardian proposition, demand for consumption goods c(τ) is unre-
sponsive to the timing of taxes, but not the demand for bonds a0(τ). If the government
sends you a 100-dollar check and you do not spend it, your savings account grows by
100 dollars. If the government charges you an additional 100 dollars in taxes, your
savings account diminishes by that amount. One critical assumption behind Ricardian
equivalence is that, if necessary, households dispose of the necessary credit to sustain
their period-zero consumption level. This has been a given in our baseline case of
the two-period model: under the natural borrowing limit (1.5), households can always
borrow if they can repay. If the government charges 100 dollars more in taxes in t = 0,
households can borrow an additional 100 dollars (plus interest) as lenders understand
taxes will be lower by that amount in t = 1. The natural borrowing limit will not bind
under the new path of taxes if it didn’t under the old one.

However, more restrictive borrowing constraints can bind and thus prevent house-
holds from keeping their consumption path unaltered. For instance, a commonly used
restriction is the no-borrowing constraint a = 0. In our model, when the borrowing
constraint binds, period-zero consumption is given by equation (1.9):

c0 = a−1 − q0a+ y0 − τ0

Hence, if a fiscal policy change ∆τ is small enough so that the borrowing constraint
continues to bind, ∆c0 = ∆τ0. In the presence of a binding borrowing constraint, an
increase in taxation leads to a reduction in current consumption since households cannot
issue more debt to pay for the higher taxes. On the opposite direction, lower taxes
(or standalone transfers) might raise consumption. As such, discussions of whether
adjustments to fiscal policy will stumble on Ricardian behavior often center around the
extent to which households are credit constrained. Obviously, one can only answer that
question empirically, on a case-by-case basis.
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Also key for Ricardian equivalence to hold is the functioning of public finances, in
particular the assumption that fiscal policy is credible and sustainable. In the context
of real debt (i.e., public bonds that pay a consumption good), fiscal sustainability is the
same as no default. Our model captures best a government that is fully credible to raise
enough revenue to eventually repay its debts (e.g. Switzerland). Deficits today lead to
surpluses tomorrow. In practice, however, governments do default. Even if they don’t,
households might believe that they can. The credible communication of a fiscal policy
plan is just as important to household behavior as the policy path itself. Whenever the
government lacks the credibility of debt repayment, lower taxes today do not imply
higher taxes tomorrow. Ricardian equivalence fails.

It is easy to take the assumptions of fiscal credibility and sustainability for granted,
especially because most modern governments finance themselves primarily through
nominal, not real debt. Agents redeem nominal debt for money, which is, in most cases,
created by the government. Hence, unsustainable fiscal policy paths do not necessarily
lead to the dramatic outcome of a government default, but rather to a decline in the
value of money (inflation). We come back to that topic later. For now, just note that
it is not clear how frequently and to which extent governments can and do promise
fully sustainable changes in fiscal policy; and that our use of the expression "fiscal
sustainability" in this section is more restrictive than the government not defaulting in
practice.

Lastly, contrary to our model’s assumptions, households are not identical, and
tax and transfers are seldom unconditional. The more realistic income, capital and
consumption taxes are a sure way to break Ricardian equivalence. Moreover, households
with different characteristics are likely to react differently to a change in fiscal policy. We
have discussed above the case of credit-constrained households. One might conjecture
that older individuals will not be as inclined to save a public transfer in order to pay
for a future increase in taxation. Perhaps the same applies to unemployed workers. In
all, the lack of household heterogeneity is a major simplification imposed by our model.

1.4. Intertemporal Choice and Equilibrium
We want to characterize the competitive equilibrium of our two-period economy. The
competitive equilibrium is defined by market prices and quantities that cover two prop-
erties. First, agents choose the quantities optimally, taking prices as given. The "taking
prices as given" part makes the equilibrium "competitive". Second: all markets clear,
which means that quantities optimally supplied equal quantities optimally demanded.

When computing an equilibrium, we fix fiscal policy (g, τ). We will later study how
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the government can choose fiscal policy to generate the "best" equilibrium possible. For
now, we take g and τ as given, assuming that they respect the present-value budget
constraint (1.7).

1.4.1. Household Optimality

Consider households’ optimal choices, c(a−1; q0, τ) and a0(a−1; q0, τ). Because they solve
the consumption-savings problem (1.6) (or (1.10)), they must satisfy the first-order
optimality condition associated with that problem. In an interior solution (i.e., in a
solution with c0 > 0, c1 > 0), that condition is the Euler equation

q0u
′(c0) = βu′(c1). (1.12)

We interpret the Euler equation (1.12) as a condition of consumption smoothing. Since
the utility function u is increasing and concave, marginal utility u′ is a positive, but
decreasing function.1 Intuitively, consuming more always makes the household "happier",
but the amount of extra "happiness" an additional unit of consumption provides declines
as it consumes more. Equating marginal utility therefore means balancing value over
time. If you are lost in the desert, do not empty the waterskin on the first night.

To prove (1.12) is the first-order condition for optimality, consider the following
variational argument. The utility gain of marginally increasing period-one consumption
by ∆c1 is βu′(c1)∆c1. According to the present-value budget constraint (1.8), to increase
period-one consumption by ∆c1, the household must give up ∆c0 = −q0∆c1 units of
period-zero consumption.

a−1 = [c0 − (y0 − τ0)] + q0 [c1 − (y1 − τ1)]
∆a−1 = ∆ [c0 − (y0 − τ0)] + q0 ∆ [c1 − (y1 − τ1)]

0 = ∆c0 + q0∆c1

The utility loss of reducing period-zero consumption is

u′(c0)∆c0 = −q0u
′(c0)∆c1.

For a choice of c to be optimal, the marginal gain cannot be lower or higher than the
marginal loss. Thus, q0u

′(c0)∆c1 = βu′(c1)∆c1, as we wanted to show.
The Euler equation (1.12) establishes a positive relationship between period-zero
1Technically, marginal utility could be zero even though utility is increasing. Here, I am assuming

u′ > 0.
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and period-one consumption.

c0 ↑ =⇒ u′(c0) ↓ =⇒ u′(c1) ↓ =⇒ c1 ↑

To find the actual solution c(a−1; q0, τ) to the consumption-savings problem, we impose
the fact that the present-value budget constraint must hold with equality. We find the
pair (c0, c1) that satisfies the Euler equation and that guarantees that households exhaust
their available resources. Lastly, we can compute the optimal choice of period-zero
savings a0(a−1; q0, τ) using the sequential budget constraint (1.9).

1.4.2. The Competitive Equilibrium

In equilibrium, prices adjust so that markets clear. In the consumption goods market,
the inelastically supplied quantity of goods y coincides with the government’s demand
g and households’ optimal demand c(b−1; q0, τ):

c0(b−1; q0, τ) + g0 = y0 (1.13)
c1(b−1; q0, τ) + g1 = y1. (1.14)

(Recall a−1 = b−1.) In the bonds market, the volume issued by the government coincides
with that demanded by households:

a0(b−1; q0, τ) = b0. (1.15)

We now show that if one of these markets clears, the other two will clear as well.
First, if the bonds market clears, the market for period-one consumption will also clear.
Indeed, from the sequential budget constraints (1.2) and (1.4):

c1 + τ1 − y1 = a0 = b0 = τ1 − g1.

The terms on the left and right imply (1.14).
Second, if the market for consumption goods clears in period zero, the market for

bonds will also clear. We again see this from the sequential budget constraints (1.1)
and (1.3). Subtracting the former from the latter:

q0 (a0 − b0)︸ ︷︷ ︸
Excess Demand
Bond Market

+ c0 + g0 − y0︸ ︷︷ ︸
Excess Demand
Goods Market

= a−1 − b−1 = 0.

If the excess demand for goods is zero (i.e., if demand = supply), the expression above
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implies a0 = b0.
The fact that we only need to clear one market is an application of Walras’ Law,

which states that, in an N -market economy, clearing of the first N − 1 markets implies
the clearing of the last one. Although we have three markets in our model, by now you
should be convinced that the market for public bonds is really a market for period-one
consumption goods. (This is the rationale behind the present-value budget constraints
(1.7) and (1.8); they focus on consumption goods only).

It is convenient that we only need to clear one market, since the only price in the
model is the price of public bonds q0 (obviously this is not a coincidence). To find the
equilibrium value of q0, replace (1.13) and (1.14) in the Euler equation:

q0(y, g) = 1
1 + r0(y, g) = β

u′(y1 − g1)
u′(y0 − g0) . (1.16)

Intuitively, equilibrium bond price q0(y, g) must provide households the due incentive to
allocate consumption intertemporally in a way consistent with the availability of goods.
For example, suppose that period-zero endowment y0 is much lower than period one’s
y1. Under which circumstances would households accept to consume so much more in
t = 1 than in t = 0 (so that u′(c1)/u′(c0) is low)? According to the Euler equation:
when bond prices are too low, or interest rates too high.

The equilibrium bond price (1.16) amplifies the scope of Ricardian equivalence. In
the previous section, we saw that households’ demand curve for goods are unresponsive
to the timing of fiscally sustainable taxes. But demand curves are not the same as
quantities demanded in equilibrium. In principle, the latter could change if bond prices
were sensitive to taxes. Expression (1.16) proves this is not the case.

1.4.3. The Fiscal Multiplier

Given a change in public spending ∆g0, economists are often interested in the resulting
change in aggregate output ∆y0. The change in aggregate output per unit of public
spending ∆y0/∆g0 is called the fiscal multiplier. In the simplified model we study in
the section, aggregate output y0 is exogenous, and unaffected by public spending. The
fiscal multiplier is zero. In the following chapters we examine models that assume more
elaborate production technologies and therefore allow for non-zero fiscal multipliers.

For now, a few aspects of the fiscal multiplier concept are worth noting. First,
economists often limit the definition of fiscal multipliers to exogenous changes in public
spending. "Exogenous" means that the change does not arise as a feedback response to
other variables, but rather as a change in the level of spending given other variables.
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There is no single fiscal multiplier. Even if we restrict the definition of a fiscal
multiplier to encompass exogenous variations in public spending, several factors can
influence their effect on the economy. Each possibility leads to a different multiplier.
Here are a few examples: is the fiscal shock anticipated? Is it long-lasting? Does the
government demand consumption or investment goods? We explore some of these cases
in the following chapters.

Lastly, the fiscal multiplier is dual to the crowding-out effect of public spending.
That is, the more output grows in response to an increase in public spending, the
less private consumption needs to decline. You can see this from the market-clearing
condition in the goods market (1.13):

∆c0

∆g0
= ∆y0

∆g0
− 1

When the fiscal multiplier is zero, each additional good purchased by the government
reduces private aggregate demand by the same amount. (In this chapter’s model we
only consider private consumption; we later consider private investment as well.) Based
on this idea, economists sometimes claim that expansion of public spending when the
economy has no spare capacity (or "slack") is detrimental to households.

Exercises
Exercise 1.1. We study the isoelastic utility function

u(c) = c1− 1
γ − 1

1− 1
γ

γ > 0. (1.17)

(a) Apply L’Hôpital’s rule to show that when γ → 1, the utility function converges
to log(c).

(b) Express the Euler equation (1.12) as

c1

c0
= [β(1 + r0)]γ .

The left-hand side is the gross rate of consumption growth 1 + gc1. Use the first-order
Taylor approximation of the log function

log(1 + x) ≈ x when x ≈ 0
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to conclude that
γ [log β + r0] = gc1.

The equation above show that parameter γ governs the elasticity of intertemporal
substitution, defined by ∆gc1/∆r0.

(c) Explain intuitively why the interest rate is increasing in consumption growth.

Exercise 1.2. This exercise guides you through the complete solution of the
consumption-savings problem (1.6), under the isoelastic utility function (1.17) and
a general borrowing limit a (i.e.we no longer assume the natural borrowing limit
−(y1 − τ1)).

(a) Suppose the household has enough wealth a−1 to support positive consumption
in period zero. Why can we guarantee positive consumption in both periods? Hint:
consider the marginal utility of consumption as it approaches zero.

(b) Set up the Lagrangian of the optimization problem (1.6). Compute the first-order
conditions to conclude that

q0u
′(c0) ≥ βu′(c1) (= if a0 > a).

(c) Start by assuming that the borrowing constraint a0 ≥ a does not bind. Use
the Euler equation to express c1 as a function of c0; replace that expression on the
present-value budget constraint to find solutions to c0 and c1, when the borrowing
constraint does not bind.

(d) Replace your solution for c0 in the period-zero sequential budget constraint (1.3)
to find the required public bond position a0. Does it satisfy the borrowing constraint?
If it does, we are done. If it does not, then the borrowing solution binds.

(e) Use the sequential borrowing constraints to find c0 and c1 when the borrowing
constraint binds.

Exercise 1.3. In this exercise we study the government’s present-value budget
constraint in a model with T periods.

(a) Suppose the sequential budget constraint

qtbt + st = b− t− 1
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holds. Show that present-value budget constraint

bt−1 =
T∑
j=t

qt,j−1sj

holds, where qt,j = ∏j
i=t qi. How do you interpret qt,j? What limit condition analogous

to b1 = 0 in the two-period model is necessary?

(b) Show that, if the present-value budget constraint holds in every period, the
sequential budget constraint holds as well (i.e., the government never defaults).

Exercise 1.4. Prove Walras’ Law (equilibrium in the goods market in period zero
implies equilibrium in period one) using the two present-value budget constraints (1.7)
and (1.8). Assume q0 > 0.

Exercise 1.5. In this example, the government does not demand final goods g = 0
and enters period zero with no debt b−1 = 0. Households’ endowment is y0 = 5,
y1 = 10, the utility function is u(c) = log(c) and β = 1. The government transfers one
consumption good to household in period zero, τ0 = −1.

(a) Find the equilibrium price of bonds and interest rate.

(b) Find the equilibrium consumption in both periods.

(c) What is the fiscally sustainable level of public transfer in period one?

(d) Compute households’ savings a0 at the end of period zero; and verify it is enough
to finance their consumption and taxes in the following period.

(e) Consider a different fiscal policy. Instead of a one consumption good transfer,
suppose the government enacts a one-period tax τ0 = 1. How do you change your
answers to (a), (b), (c) and (d)?

(f) Consider now the existence of a no-borrowing constraint. A no-borrowing con-
straint is a borrowing constraint involving a zero debt limit: −a = 0. That is, we change
equation (1.5) to a0 ≥ 0. Consider again the fiscal policy change in τ you found in item
(e). At the same bond price as item (a), can the household keep its consumption process
unchanged? Does Ricardian equivalence hold?

(g) Under the no-borrowing constraint, is it possible to find an equilibrium with
positive bond prices q0 > 0 and period-zero positive taxes τ0 > 0?

Exercise 1.6. The economy is populated by a unit measure of identical households,
subject to the natural borrowing limit. The government announces a new period-zero
transfer of one consumption good, but only to half the population. It credibly commits
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to increase taxation in period one, so that the new fiscal policy remains sustainable.
Based on that information, can you say that Ricardian equivalence continues to hold
for sure? Can you say that it breaks? Explain.

Exercise 1.7. The government adopts a feedback rule to public spending:

g0 = θy0 + e0,

where θ is a model parameter and e0 is exogenously determined.

(a) Compute equilibrium output as a function of aggregate consumption c0 and the
shock e0.

(b) Suppose θ > 0. For an exogenous reason, aggregate output grows by ∆c0.
Compute ∆y0/∆g0. Your favorite financial media commentator measures ∆y0/∆g0 > 0
and, based on his findings, argues that in the future the government should raise public
spending in times of low output. Does the model support the commentator’s claim?
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Chapter 2

Production and Marginal Taxation

Capital k, depreciates at a rate δ > 0. No investment cost.
Labor hours n ∈ [0, 1]. Interpret n as the share of available hours devoted to labor

activity. Leisure 1− n.
Production function f(kt−1, nt), homogeneous of degree one: f(αx) = αf(x). Aggre-

gate resource constraint:

yt = ct + gt + kt − (1− δ)kt−1 t = 0, 1 (2.1)

The term kt − (1− δ)kt−1 is the aggregate investment.
Households can purchase government bonds or physical capital. There is no un-

certainty, so they choose whichever offers the best after-tax return. Let d be the
representative household’s net wealth. Market-clearing in the capital market:

d0 = q0b0 + k0. (2.2)

Capital market closes in period one: d1 = b1 = k1 = 0.
Capital rental rent rt. Wage rate wt. Marginal taxes on consumption τc,t, labor

income τn,t and capital income τk,t. Lump-sum taxes τL,t. Capital income tax applies to
the net returns on both bond and physical capital investments. Depreciation deductible.
The government’s budget constraints are the following.

q0b0 + τc,0c0 + τk,0r0d−1 + τn,0w0n0 + τL,0 − g0 = b−1

τc,1c1 + τk,1r1d0 + τn,1w1n1 + τL,1 − g1 = b0
(2.3)
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No-arbitrage in capital market:

1 + (1− τk,1)
(

1
q0
− 1

)
= 1 + (1− τk,1)r1 (2.4)

1/q0 = 1 + r1 is the real interest rate. In the last chapter, we called r0 the interest rate;
it is now r1 because the interest rate coincides with the cost of capital rent in period
one.

Sequential representation of households’ consumption-savings problem:

Max
c,n,d0

u(c0) + v(1− n0) + β [u(c1) + v(1− n1)]

d0 + (1 + τc,0)c0 ≤ [1 + (1− τk,0)r0] d−1 + (1− τn,0)w0n0 − τL,0
(1 + τc,1)c1 ≤ [1 + (1− τk,1)r1] d0 + (1− τn,1)w1n1 − τL,1

c0, c1 ≥ 0
0 ≤ n0, n1 ≤ 1

(2.5)

First-order conditions. Euler equation:

u′(c0)
1 + τc,0

= β [1 + (1− τk,1)r1] u′(c1)
1 + τc,1

(2.6)

Intratemporal condition for optimal supply of labor hours, in an interior solution:

v′(1− nt) = 1− τn,t
1 + τc,t

wtu
′(ct) t = 0, 1. (2.7)

Marginal benefit of working one more hour = marginal cost. Setting τn,t = τc,t = 0 for
brevity, consider the effect of a small change in the wage rate ∆w > 0:

u′(c)∆w︸ ︷︷ ︸
Substitution
Effect, >0

+wu′′(c)∆c︸ ︷︷ ︸
Wealth

Effect, <0

= −v′′(1− n)∆n

Substitution effect: supply more hours of labor because marginal benefit (wage) increases.
Wealth effect: reduce supply of labor hours because higher wages leave household
wealthier (alternatively: wealthier household purchases more hours of leisure). Effect of
∆w > 0 on labor supply ambiguous.

Firm rents capital and hires labor hours to produce consumption goods. Firm’s
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profit maximization problem:

Maxk,n f(k, n)− (rt + δ)k − wtn t = 0, 1.

Since f is homogeneous of degree one, maximized profit equals zero. First-order condition
for optimal capital and labor demand:

fk

(
kt−1

nt
, 1
)

= rt + δ, (2.8)

fn

(
kt−1

nt
, 1
)

= wt, t = 0, 1. (2.9)

Since f is homogeneous of degree one, derivatives fk and fn are homogeneous of degree
zero. Both are functions only of the capital-labor ratio.

In equilibrium, households and firms act optimally. Labor hours and capital de-
manded by firms coincide with that supplied by households, in both periods. The initial
conditions of the two-period economy satisfy

d−1 = q−1b−1 + k−1 and 1 + r0 = 1
q−1

.

Therefore, Walras’ Law holds. If the market for consumption goods clears in period
zero, the capital market will clear; thus the market for goods in period one will clear
too.

2.1. Model Implications
· Equivalency between consumption tax τc and labor tax τn.

· When labor supply is inelastic, constant consumption and labor taxes are not
distortionary, like lump sum taxes.

· Capital taxation is distortionary, regardless of labor supply elasticity.

· Public debt crowds out private capital (as long as private savings not infinitely
elastic).
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Exercises
Exercise 2.1. In this exercise, we focus on the optimal supply of labor by the

household in period zero. The properties of labor supply in period one are analogous.

(a) Mind the physical constraint on labor hours: 0 ≤ n0 ≤ 1. Set up the Lagrangean
for the consumption-savings problem (2.5) to find the general first-order condition for
the intratemporal choice of labor supply:

w0u
′(c0) ≥ v′(1− n0) if n0 > 0

w0u
′(c0) ≤ v′(1− n0) if n0 < 1.

(b) For the following items, assume u(c) and v(1− n) are isoelastic:

u(c) = c1− 1
γ − 1

1− 1
γ

v(1− n) = c1− 1
ψ − 1

1− 1
ψ

(2.10)

Argue that households will not supply their entire labor endowment: n0 < 1.

(c) Find the lowest level of period-zero consumption c0 compatible with a zero supply
of labor hours n0 = 0. Interpret the existence of this lower bound on consumption.

(d) Show that the ψ is the Frisch elasticity of labor supply, defined as the change
in labor hours supplied given a change in the log of the wage rate, fixing the marginal
value of consumption:

Frisch elasticity = ∂n0

∂ logw0

∣∣∣∣
constant u′

.

Hint: use the approximation log(1 − n) = −n when n ≈ 0. (Note: economists often
define Frisch elasticity as the change in log hours, to focus on percentual change in
labor hours. Here, we define it as a change in n0 because n0 already represents the share
of available hours devoted to labor.)

Exercise 2.2. In this exercise, we study how the volume of taxation affects the
equilibrium in the capital market, in the absence of marginal distortions. The government
begins period zero with no debt b−1 = 0. Fiscal policy is characterized by a lump sum tax
series τ = (τ0, τ1). There is no public spending, and no marginal taxation. Households
derive no utility in leisure, and thus supply their entire endowment of working hours
n0 = n1 = 1. The production function available to the representative firm displays
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perfect elasticity of substitution between capital and labor:

yt = f(kt−1, nt) = (r̄ + δ)kt−1 + w̄nt,

which implies that, in equilibrium rt = r̄ and wt = w̄, for t = 0, 1. Households face the
natural borrowing limit.

(a) Write the household’s consumption-savings problem, using the equilibrium prices.
Replace its sequential budget constraints on the Euler equation to find an expression
defining the optimal choice of net wealth d0 in equilibrium.

(b) State the household’s present-value budget constraint. Does Ricardian Equiva-
lence hold?

(c) Starting from a given equilibrium, suppose the government raises lump-sum
taxes in period zero τ0 by ∆τ0 > 0, without changing τ1. Use the condition derived in
(a) to show that −∆τ0 < ∆d0 < 0. Provide an intuition.

(d) Considering the fiscal policy change of (c), compute the change in physical
capital ∆k0. What is the effect of a tax increase in period-one output?

Exercise 2.3. Suppose marginal taxes are constant: τc,0 = τc,1, τk,0 = τk,1. Assum-
ing equilibrium households’ consumption is also constant c0 = c1 > 0. Use the Euler
equation (2.6) and the firm’s capital demand schedule (2.8) to find the equilibrium
interest rate r1 and the capital labor ratio k0/n1. In economic models with infinite
periods, these values are the steady-state levels of interest and capital labor ratio. Which
forms of taxation affect the steady-state interest rate?

Exercise 2.4. In this exercise, we are interested in representing graphically the
equilibrium in the capital markets, in a version of our two-period economy with inelastic
labor supply. The functional formats are

u(c) = log(c) f(k, n) = kαn1−α.

Households derive no utility in leisure, v(`) = 0, and therefore supply their entire
endowment of labor: nt = 1.

You should write your solution code for a general set of parameters, that you can
easily change later. In the baseline specification, use β = 0.75, α = 0.5 and δ = 0. For
now, we shut down the government: set all taxes, public spending and public debt to
zero. The initial conditions for capital and household wealth is : k−1 = d−1 = 1.
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Capital labor ratios k−1 and k0 determine prices (w, r) through the firm’s first-order
conditions (2.8) and (2.9). (k−1 and k0 are capital labor ratios since n0 = n1 = 1).
Initial capital k−1 is predetermined, so we focus on k0. Build an equally-spaced grid K
for period-zero physical capital, with twenty points:

0.25 = k1 < k2 < · · · < k20 = 1.25.

For each k0 ∈ K, follow the steps below.

(a) Find the associated prices (w, r) using (2.8) and (2.9).

(b) Pick a one thousand-sized grid D of household net wealth points

0.25 = d1 < d2 < · · · < d1000 = 1.25.

We make D thinner than K to make sure that we approximate the optimal choice of
household savings with a low error. For each wealth point d0 ∈ D, use the sequential
budget constraints to find the associated period-zero and period-one consumption,
loosely denoted c0(d0) and c1(d0).

(c) Compute households’ optimal savings choice d∗0 as the D point that maximizes
utility:

d∗0 = Argmax
d0∈D

u(c0(d0)) + βu(c1(d0)).

(Whenever c0(d0) < 0, discard the candidate choice of d0.)

(d) Repeat (a)-(c) to all k0 ∈ K. You should have a pair of vectors r1(k0) and d0(k0)
containing the period-zero interest and households’ savings for each grid point. Do
higher capital points k0 in the grid correspond to lower or higher choices of wealth d0

by the household? Explain intuitively.

(e) Plot capital demand k0 and capital supply d0(k0) as functions of interest r1(d0).
Interest should be on the vertical axis of your plot.

(f) How does the equilibrium change if we make households more impatient? Repeat
(a)-(d) using β = 0.50, and update your capital equilibrium plot of exercise (e) with the
new capital supply curve.

Exercise 2.5. Consider again the environment of Exercise 2.4., but we now add
an active government. To keep the exercise simple, the government chooses taxation
parameters exogenously, and adjusts public spending to ensure fiscal policy is sustainable.
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Initially, marginal taxes are fixed at 10%:

τc = τn = τk = [0.1 0.1]′,

and there is no lump-sum taxation, period-zero public spending is g0 = 0.3. The
government has no initial debt: b−1 = 0 .

Your mission is to compute the equilibrium of the economy. We adopt an iterative
procedure to find the equilibrium capital labor ratio, with each iteration indexed by
the symbol i. Given the firms’ first-order condition (2.8), searching in the space of
capital labor ratios is similar to searching in the space of interest or wage rates. Start
by guessing a period-zero capital labor ratio ki=0

0 = 1.

(a) Given a candidate capital labor ratio ki0, follow steps (a)-(c) of the previous
exercise to compute households’ optimal savings d∗i0 . Calculate the government’s net
debt position bi0 in period zero, and then the stock of physical capital that clears the
capital market:

k̃i0 = d∗i0 − qi0bi0.

If k̃i0 ≈ ki0, stop. You have found the solution. Otherwise, you must update the capital
labor ratio for the next iteration. Either set ki0 = k̃i, or use damping to improve
numerical stability:

ki+1
0 = σk̃i0 + (1− σ)ki0

where σ ∈ (0, 1). After finding the equilibrium capital labor ratio, compute equilibrium
r, w and c. Compute the level of government spending in period one g1, and verify that
the market for consumption goods clears.

(b) Repeat exercise (a), raising τc,1 and τk,1 to 0.2, one at a time. Report how wages,
interest and household consumption change, and explain the new results intuitively.
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Chapter 3

Income Risk and Public Insurance

3.1. Introducing Risk
Same setup as chapter 1, but now households face idiosyncratic income risk in period
one.

y1 =

ȳ1 + z with probability 1/2
ȳ1 − z with probability 1/2

Parameter z introduces risk. When z = 0, we recover the deterministic case y1 = ȳ1.
The expected value of period-one income is

E[y1] = 1
2 (ȳ1 + z) + 1

2 (ȳ1 − z) = ȳ1.

Given the existence of a unity measure of households, ȳ1 is the aggregate output in
period one.

We must adapt utility function to accommodate the existence of uncertainty. Assume
expected utility format

u(c0) + βE[u(c1)] = u(c0) + β
[
0.5u(cH1 ) + 0.5u(cL1 )

]
,

where cH1 is consumption in the "high" income state, cL1 in the "low" income state. When
z = 0, we recover the original utility function u(c0) + βu(c1). We say households are
(strictly) risk-averse when u is (strictly) concave. We assume u to be strictly concave.

How does the introduction of risk changes demand for consumption goods and
public bonds? Assume natural borrowing limit, and that limc→0 u

′(c) =∞, so that the
solution to consumption is interior with respect to the borrowing limit. Consider first
the original case with deterministic y1 = ȳ1 and no government. Let aD0 denote public
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bond demand ("D" for deterministic), and the same for cD. Optimality requires the
Euler equation:

q0u
′(y0 − q0a

D
0 ) = βu′(aD0 + ȳ1). (3.1)

The effect of introducing income risk on household income depends on whether u′ is a
concave or convex function. That is, it depends on the third derivative of the utility
function u′′′. It is common to assume limc→0 u

′(c) =∞ and limc→∞ u
′(c) = 0, suggesting

that u′ is a convex function: u′′′ > 0. This is the case with the common isoelastic utility
function.

The consumption-savings problem faced by the household in the presence of income
risk:

Max
c,a0

u(c0) + β
[
0.5u(cH1 ) + 0.5u(cL1 )

]
s.t. q0a0 + c0 ≤ y0 (3.2)

cH1 ≤ a0 + y1 + z (3.3)
cL1 ≤ a0 + y1 − z (3.4)

c0, c1 ≥ 0

Since u′(0) =∞, households choose positive consumption in both states, and borrowing
constraint does not bind. In the interior solution, the Euler equation is:

q0u
′(c0) = β

[
0.5u′(cH1 ) + 0.5u′(cL1 )

]
= βE[u′(c1)]. (3.5)

Replacing the sequential budget constraints (3.2)-(3.4):

q0u
′(y0 − q0a0) = βE[u′(a0 + y1)]

When u′ is a strictly convex function (u′′′ > 0), households react to the introduction of
income risk by reducing consumption and raising demand for public bonds. To see this,
apply Jensen’s inequality to the Euler equation:

q0u
′(y0 − q0a0) = βE[u′(a0 + y1)]

> βu′(a0 + E[y1])
= βu′(a0 + ȳ1)

Compare the inequality above with (3.1). Households react to the introduction of
randomness by changing demand for bonds so as to increase period-zero marginal
utility, relative to the deterministic case. How come? In the presence of risk, they
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equate marginal utility in t = 0 to expected marginal utility of consumption in t = 1
(E[u′(c1)]), which is higher than the marginal utility of expected consumption (u′(E[c1])).
Intuitively, the combination of u′(cH1 ) and u′(cL1 ) is higher than u′(E[c1]) because the
value of consumption does not drop as much when c grows as it increases when c

declines. Hence, to satisfy the new version of the Euler equation, households reduce
consumption in period zero, and increase public bond demand a0, a behavior called
self-insurance. Economists also say that households engage in precautionary savings.

The introduction of randomness in the income process reduces household welfare,
ex-ante:

u(cD0 ) + βu(cD1 ) ≥ u(c0) + βu(c̄1) ≥ u(c0) + β
[
0.5u(cH1 ) + 0.5u(cL1 )

]
(In the expression above, c represents optimal consumption in the income risk case.)
The first inequality follows from optimality of cD in the deterministic case; the second
inequality follows from concavity of u (Jensen’s inequality). Since we assume u to be
strictly concave, the expression holds with strict inequality.

Utilitarian government can improve ex-ante welfare by charging 100% income tax in
period one, and fully re-distributing proceeds.

3.2. An Environment with Elastic Labor Supply
Introduce elastic labor supply. Households remain identical in period zero, and supply
their entire endowment of hours to firms: n0 = 1. In period one, they value leisure, as
captured by the utility function:

u(c0) + βE [u(c1) + v(1− n1)] .

For the remainder of this section, we focus on period one. Period utility in t = 1
is u(c) + v(1 − n), where n is number of hours devoted to labor. We assume twice
differentiable, increasing, concave u and v. Additionally, lim`→0 v

′(`) =∞, so households
always devote some time for leisure: n < 1.

No physical capital. Households provide differentiated labor hours. Each household
has an individual (or idiosyncratic) level of productivity z, meaning that n hours of
its labor corresponds to z × n efficiency hours of labor. Efficiency hours of labor differ
from physical hours of labor because they incorporate individual productivity. Random
variable z can take S different values: z1 < z2 < · · · < zS, with probability p1, p2, . . . , pS,
respectively. Of course, ∑s ps = 1.
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Symbol Description
nz1 Labor hours supply by household with productivity z
n̄1 Aggregate (efficiency) hours labor
w1z Wage rate per hour of labor
w1 Wage rate per efficiency hour of labor

h1 = w1n̄1 Aggregate labor income
rev = τh1 Public revenue from labor income

Table 3.1: Key Labor Market Variables in Period One

Productivity draws are independent from each other. Therefore, after draws occur,
p1 households land state s = 1, p2 land s = 2, and so on. This is an application of the
law of large numbers.

We break down production into two layers. A representative intermediary firm hires
labor hours from households and builds a homogeneous "aggregate efficiency labor"
commodity (or just "aggregate labor", for brevity). The representative firm that produces
consumption goods uses aggregate labor as the only production factor.

The intermediary firm aggregates labor using the production function

n̄1 =
∫ 1

0
z(j)n(j)dj = p1(z1n

z1
1 ) + · · ·+ pS(zSnzS1 ) = E [znz1] .

In the integral, z(j) is the productivity of household j and n(j) is its labor choice. I
also define nz1 as the working hours choice made by households with productivity z. We
characterize their optimal choice later.

The intermediary firm sells the n̄1 aggregate hours at a rate of w1 per hour. Since
technology is linear, in equilibrium the wage rate is w1 × z. Hence, we refer to w1 as
the wage rate per efficiency hour of labor. The aggregate labor income h1 is

h1 =
∫ 1

0
w1z(j)ñ(j)dj = w1n̄1.

Table 3.1 summarizes labor market variables in period one.
Breaking the wage rate between its idiosyncratic and common components is conve-

nient because the number of aggregate hours of labor demanded by the consumption
good producer depends only on the latter. Since we focus on taxation, suppose the
final good producers converts one hour of aggregate labor into one consumption good.
Hence, w1 = 1. (In any case, we continue to write w1 in the formulas, for clarity of
the arguments.) In this setup, all firms are indifferent regarding production scale: their
profits equal zero regardless.
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3.3. Taxation and Laffer Curve
We are interested in studying if and how the government can use fiscal policy to help
insure households against income risk. We start by focusing on a fiscal policy that
combines a flat tax τ on labor income and lump-sum transfers R to households, both
imposed only in period one. This notation simplifies the more cumbersome τn,1 and τL,1
symbols of chapter 2, which we can drop since there are no other taxes.

By the sequential budget constraint, period-one consumption for a household with
productivity z is

cz1 = a0 + (1− τ)w1zn
z
1 +R.

The first-order condition for labor supply:

(1− τ)w1z u
′(cz1) ≤ v′(1− nz1) (= if nz1 > 0) (3.6)

Marginal benefit of working +1 hour = marginal cost; otherwise, household are con-
strained. Since v′ > 0, 100% taxation τ = 1 leads to nz1 = 0: households supply no hours
of labor.

For the remainder of this section, we fix a0, w1 and R, and express optimal labor
choice nz1(1 − τ) as a function only of the net-of-tax parameter 1 − τ . Because of
substitution and wealth effects, an increase in τ has an ambiguous effect on n1 (but we
know that n1 = 0 when τ = 1).

With the individual labor supply nz1(1− τ), we can compute aggregate labor supply

n̄1(1− τ) = p1(z1n
z1
1 (1− τ)) + . . . pS(zSnzS1 (1− τ))

and the aggregate labor income h1(1− τ) = w1n̄1(1− τ). By charging a marginal rate
τ , the government raises a total revenue of τh1. Express that as a function of τ :

rev(τ) = τ h1(1− τ) ≥ 0.

Function rev(τ) is known as the Laffer curve. Its shape depends largely on the labor
supply model at hand. In general:

· rev(0) = 0 (τ = 0, no taxes charged)

· rev(1) = 0 (n1 = n̄1 = 0, households have no incentive to work).

In the particular case that h′ ≥ 0 and h′′ ≤ 0, the Laffer curve has an inverted-U shape.
Figure 3.1 shows an example.
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Figure 3.1: Laffer Curve Example

Revenue-maximizing tax rate τ̄ satisfies rev′(τ̄) = 0:

rev′(τ̄) = h1 − τ̄h′1 = 0, (3.7)

where h1 and h′1 are both evaluated at the point 1− τ̄ . Re-writing the expression above
yields:

τ̄ = 1
1 + e

where e = ∂h(1− τ̄)
∂(1− τ)

1− τ̄
h(1− τ̄) (3.8)

is the elasticity of aggregate labor income to after-tax efficiency wage rate (1− τ)w1,
which we can measure empirically. Higher elasticities are associated with lower optimal
tax rates.

3.4. Optimal Insurance
To provide insurance against income risk, the government distributes the proceeds
from the labor tax charge back to households in the form of a lump-sum transfer R.
Each household receives the same transfer: we thus model a universal basic income
program. If the government uses all available resources, and if the policy is sustainable,
R = rev(τ); so we can write R(τ).

We continue to leave a0 and w1 fixed. Which tax rate τ maximizes household welfare
ex-ante (i.e., prior to the productivity draw)? Utility at the beginning of period one:

E [u(a0 + (1− τ)w1zn
z
1 +R(τ)) + v(1− nz1).]
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(Labor supply n1 evaluated at (1− τ).) To facilitate notation, let

u′z(τ) = u′ (a0 + (1− τ)w1zn
z
1(1− τ) +R(τ))

be the period-one marginal utility of a household that draws z. The first-order condition
for optimal tax rate τ ∗ is

E [u′z(τ ∗)]R′(τ ∗) = E [u′z(τ ∗)znz1(1− τ ∗)] > 0.

(Note the application of the envelope theorem.) Since u′ > 0, R′(τ ∗) = rev′(τ ∗) > 0.
Compare this condition to (3.7). Isolating optimal taxation:

τ ∗ = λ

λ+ e
, (3.9)

where
λ = −cov (u′z, znz1)

n̄1E(u′z)
≥ 0

measures the degree of consumption inequality after public insurance has been im-
plemented. If the government manages to equalize consumption across households, u′

is constant and hence λ = 0. Otherwise, λ > 0 since marginal utility decreases in
consumption and hence in realized labor income znz1.

Optimal taxation is increasing in inequality, and decreasing in labor supply elasticity.

Exercises
Exercise 3.1. In the context of the model with elastic labor supply and hetero-

geneous productivity, express aggregate labor income as a function of the labor tax
rate H1(τ) ≡ h1(1− τ). Show that the tax rate τ̄ that maximizes government revenue
attains

−∂H1(τ̄)
∂τ

τ̄

H1(τ̄) = 1.

That is, the elasticity of H1 with respect to the tax rate is equal to one in the revenue-
maximizing point. Provide an interpretation.

Exercise 3.2. Consider a model with discrete labor choice and no uncertainty.
Households can either supply their whole endowment of hours n1 = 1, or no hours at
all n1 = 0. They enter period one with a public bonds, and are offered a wage rate of w.
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Period-one utility is
u(c)− ζ 1n=1,

where ζ > 0, and 1n=1 is an indicator function, which equals one when n = 1, and zero
otherwise. Function u is increasing.

(a) Start by assuming there is no taxation. Compute the household’s labor supply
decision rule, as a function of a and w.

(b) Suppose the government charges a flat marginal tax rate τn,1 on labor income,
and uses the revenue for public spending (which households do not value). Re-compute
the household’s decision rule. Find the expression defining the threshold taxation level
τ ∗n,1 above which households opt not to work.

(c) Sketch the plot of the Laffer curve.

(d) Suppose u(c) = log(c). How does τ ∗n,1 depend on households’ wealth a? Explain
intuitively.

Exercise 3.3. We consider a particular case of GHH preferences (following Green-
wood, Hercowitz and Huffman). In period one, the utility function is u(c+ Φv(1− n)),
where u is increasing and differentiable, and

v(1− n) = (1− n)1−1/ψ

1− 1/ψ .

(a) Compute the first-order condition for the optimal choice of labor in period one.
Since v′(`)→∞ when `→ 0, n1 < 1: you only need worry about the lower bound on
labor choice. Show that when w ≤ Φ, the household does not work: n1 = 0.

(b) Use the first-order condition to argue that there is no wealth effect on labor
supply.

(c) With the help of a computer, set Φ = ψ = 0.5 to reproduce the Laffer curve in
figure 3.1.

Exercise 3.4. Universal basic income (UBI) programs propose that every individual
receives an unconditional transfer of money, regardless of their earnings and other aspects
of tax legislation. Consider a UBI scheme that transfers R consumption goods, and
taxes all households at a flat rate of τ . Show that this UBI program is economically
equivalent to a non-UBI, nonlinear taxation scheme that establishes two income brackets:
h ≤ ĥ = R/τ and h ≥ ĥ. Find the required tax functions T0(y) and T1(y) in each
income bracket (households that earn less than h < ĥ pay T0(h) in taxes; those who
earn h ≥ ĥ pay T0(ĥ) + T1(h− ĥ)).
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Exercise 3.5. Consider the elastic labor supply model of the main text, in which
the government inherits no public debt: b−1 = 0. All households have access to half a unit
of the consumption good in period zero (y0 = 0.5) from labor endowment. Households
have the utility function

u(c0) + βE [u(c1) + v(1− n1)]

where u(x) = v(x) = log(x), and β = 0.8. Productivity z can take two values: z1 = 1+σ

and z2 = 1− σ, each with probability p = 0.5.

(a) Initially, the government does not tax or transfer goods. In equilibrium, what
is the net wealth a0 of each household in the beginning of period one? Show that the
optimal labor supply is n1 = 0.5, regardless of z. Compute household income as a
function of productivity. (To solve this problem, recall that w1 = 1.)

(b) With the help of a computer, plot the equilibrium interest rate as a function of
σ (vary σ from 0 to 0.4), and provide an interpretation for your findings.

(c) Let σ = 0.2. Suppose now that the government introduces a basic income program,
funded by a τ = 0.2% flat labor income tax. Derive analytically each households’ optimal
labor supply nz1, given the government’s transfer R. Your first task is to compute the
government revenue R from taxing labor income, which depends on household labor
supply (which, in turn, depends on R itself).

Write in your code a function that computes optimal labor supply given a lump-
sum transfer R. Write up a second function g(R) that uses the first one to calculate
the government revenue from taxing households. The equilibrium revenue raised by
the government by taxing labor income satisfies the fixed-point problem: R = g(R).
Compute R. (Tip: adopt an iterative procedure. Guess some R0; then update your guess
using Ri = g(Ri−1) until Ri is close enough to the fixed point.)

(d) With the equilibrium lump-sum transfer R, compute the equilibrium interest
rate, and compare it with the interest rate arising in the absence of taxation. Explain
intuitively why results differ. Does public insurance against income risk guarantee a
decline in period-zero demand for bonds?

Exercise 3.6. Model with capital.
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Chapter 4

Introduction to Finite-Horizon
Dynamic Programming

4.1. Dynamic Programming Concepts

4.2. Adding Uncertainty

4.3. Computing Optimal Supply of Labor
This section provides an algorithm to compute household’s optimal supply of labor
hours. Define the "net" marginal benefit of increasing working hours

h(n) = wu′(wn+ z)− v′(1− n),

where w is the after-tax income and a is a term that groups other components of
the budget constraint, like bond redemptions, new bond purchases and government
transfers. Here, we fix both w and z. When h(n) > 0, the marginal benefit (in utility
units) of working a little more wu′(wn+ z) outweighs the marginal cost v′(1− n) of
reducing leisure hours.

We usually assume u and v are concave, which implies that u′′, v′′ < 0 and, thus,
h′(n) < 0. As you work more, the benefit of increasing labor hours declines - first
because leisure becomes scarcer (thus more valuable, v′ term) and, second, because
consumption grows (thus becomes less valuable, u′ term).

Let n∗ be the optimal supply of labor hours. We can split the first-order condition
for n∗ to be optimal in three cases. Case 1: If n∗ is an interior solution for the household
problem, then h(n∗) = 0. Case 2: If n∗ = 0 and the household is constrained by the fact
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(a) Interior Solution (b) Lower Bound Solution (c) Upper Bound Solution

Figure 4.1: Marginal Net Benefit Function h: Solution Cases

that it cannot work less than zero hours, then h(n∗ = 0) ≤ 0. Case 3: If n∗ = 1 and
the household is constrained by the fact that it cannot work more than all available
time, then h(n∗ = 1) ≥ 0. Figure 4.1 depicts three examples of h, each with a solution
belonging to a different case.

In practice, we do not know from the beginning which case is right. However, since
net marginal benefit always declines in labor hours (h′ < 0), we know that h′(n∗) = 0
can only hold for a single point. We can therefore adopt the following algorithm to
numerically (or analytically) compute n∗:

1. If h(0) ≤ 0, then n∗ = 0. Stop.

2. If h(1) ≥ 1, then n∗ = 1. Stop.

3. Otherwise, search for the zero of h in the interval (0, 1).

If you get to the last step, then you know that h(0) > 0 and h(1) < 0 (otherwise the
algorithm stops in one of the previous steps). In that case, you need to find the zero of
function h, that is, the point n∗ between zero and one such that h(n∗) = 0.

A simple bisection method can be applied to find the zero of h. Starting with n0 = 0
and n1 = 1, follow the steps below.

1. Define n = n0+n1
2 .

2. If n0 ≈ n1 or h(n) ≈ 0, stop. You have found the zero of h.

3. If h(n) > 0, set n0 = n and go back to step 1.

4. If h(n) < 0, set n1 = n and go back to step 1.

(The bisection method above assumes h is decreasing; if you are interested in finding
the zero of an increasing function f , you can imply the steps to −f .)

35



Exercises
Exercise 4.1. Given a decreasing function f , and two points a < b, write the code

of a function that applies the bisection method described in section 4.3 to find the zero
of f between a and b.

(Tip: In the context of iterative procedures that depend on control clauses to end
- like the bisection method -, it is good practice to limit the number of iterations
the algorithm can perform. Otherwise, typos or unfortunate examples can lead your
computer to loop over the iteration endlessly.)

Exercise 4.2. Let

u(c) = c1− 1
γ − 1

1− 1
γ

and v(`) = `1− 1
ψ − 1

1− 1
ψ

.

When γ = 1, u = log, and the same is true for ψ and v. Write a code that applies the
algorithm described in section 4.3 of this chapter to compute the optimal labor supply
choice in the problem

Max
n

u(wn+ a) + v(1− n) s.t. 0 ≤ n ≤ 1.

Use can use the bisection function you wrote in the previous exercise.

36



Chapter 5

Overlapping Generations and
Pension Systems

5.1. OLG in Infinite Periods
Infinite periods t = 0, 1, 2, . . . . Each period, new generation of households born (unity
measure). Households live for two periods, "young" and "senior". Single consumption
good. Young households receive an endowment of one unit of the consumption good.
No government action.

Let cts be period-s consumption of household born in period t, with s ∈ {t, t+1}. Let
att be bond position (households allowed to sell bonds to each other). Linear preferences,
no discounting:

Max
ct≥0,att

ctt + ctt+1 (5.1)

s.t. qta
t
t + ctt ≤ 1

ctt+1 ≤ att (5.2)

Finite demand for public bonds only when qt = 1.
Market clearing conditions in period t:

ctt + ct−1
t = 1
att = 0

In equilibrium, qt = 1 and each household consumes its own endowment when young.
However, this equilibrium is not Pareto optimal. Problem of infinity. Alternative

allocation: generation born in t transfers its endowment to generation born in t− 1. All
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generations left with the same single consumption good, except t = 0 generation, which
gets two consumption goods.

5.2. Three-Period Environment
Three periods: t = 0, 1, 2. Two generations: A and B. Each with the same size of one.
Generation A lives in periods zero and one, not in period two. Generation B is born in
period one, and lives in period two. First period of life: "young". Second period: "senior".

Single consumption good. No capital. Households can only work when young. When
senior, they receive an exogenous endowment of e units of the consumption good (home
production). Linear production function f(n) = n implies wage rate w = 1.

We initially ignore the government. Natural debt limit. Households subject to the
natural debt limit. Those of generation A solve the problem

Max
cA≥0,aA0

u(cA0 ) + v(1− nA0 ) + βu(cA1 )

s.t. q0a
A
0 + cA0 ≤ nA0

cA1 ≤ aA0 + e.

(5.3)

Households of generation B solve a consumption-savings problem analogous to (5.3).
The market-clearing conditions are the following:

cA0 = nA0 (5.4)
cA1 + cB1 = nA1 + e (5.5)

cB2 = e (5.6)

In equilibrium, neither generation saves or borrows - bond prices must be such that not
trading in the bond market is their optimal choice.

Household heterogeneity embedded in models with overlapping generations provides
an easy way to break Ricardian equivalence. The timing of taxes affects individual and
aggregate demand because it affects the total income of different households.

5.3. A Pension System Model
Model with a "pay-as-you-go" pension system. Young generation B pays for senior
generation A households in period one. Households from generation A face a probability
ρ ∈ [0, 1] of "retiring" in period one. We can use ρ to capture the size of the pension
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system as well as the retirement age.
Retired seniors receive a lump-sum transfer of φ consumption goods. Young house-

holds from generation B finance retirement payments through a lump-sum tax τ (we
drop subscripts from τ to keep notation light - there are no other taxes). The government
runs a balanced budget:

ρφ = τ.

Generation A utility and consumption-savings problem:

Max
cA≥0,aA0

u(cA0 ) + v(1− nA0 ) + β
[
ρu(c̃A1 ) + (1− ρ)u(cA1 )

]
s.t. q0a

A
0 + cA0 ≤ nA0

cA1 ≤ aA0 + e

c̃A1 ≤ aA0 + e+ φ

(5.7)

c̃A1 represents consumption if the household retires. In that case, it receives pension
payment. Else, it only consumes its own savings and exogenous endowment. Utility
function has expected utility format.

Generation B faces conventional consumption savings-problem:

Max
cB≥0,aB1

u(cB1 ) + v(1− nB1 ) + βu(cB2 )

s.t. q1a
B
1 + cB1 ≤ nB1 − τL,1

cB2 ≤ aB1 + e

(5.8)

Market-clearing conditions (5.4)-(5.6) stay the same.
Example: no leisure value v = 0. Therefore: nA0 = nB1 = 1. Euler equations:

q0u
′(1) = β [ρu′(e+ φ) + (1− ρ)u′(e)]

q1u
′(1− ρφ) = βu′(e)

Expansion of the pension system (higher ρ or higher φ) reduces the demand for public
bonds from households in both generations, as they are left relatively richer when they
are older. In equilibrium, bond prices decline, interest rates increase.

Exercises
Exercise 5.1. Consider the basic overlapping-generations model with no govern-

ment. Continue to assume the linear production function f(n) = n, and unity wage
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rate. Assume u(c) = v(c) = log(c).

(a) Given β and e, find equilibrium consumption levels and bond prices.

(b) Suppose the government imposes a lump-sum tax of τ1 consumption goods to
households of generation A in period one, and τ2 to generation B in period two. Both
τ1 and τ2 can be negative, in which case the government is transferring goods instead
taxing them. Assuming the government enters period zero with no debt, write down its
sequential and present-value budget constraints.

(c) Assume the government transfers −τ1 > 0 goods to generation A households.
Solve (a) under the new fiscal policy. Provide an intuition as to why the allocation and
price vectors differ. Does Ricardian Equivalence hold?

Exercise 5.2. In the context of the two-period unfunded pension system model,
consider again the case in which households don’t value leisure, n = 0. Suppose the
government has decided on the size τ of the pension system, but not on parameters
ρ and φ. You can think that the government is choosing between different eligibility
criteria unrelated to economic factors.

(a) Parameters ρ and φ must satisfy ρφ = τ . How does the choice of ρ affect demand
for public bonds by generation B households and interest rate in period one?

(b) How does it affect the demand for public bonds by generation A households and
interest rate in period zero? You may assume that u′ is a strictly convex function; it
satisfies:

u′(b) > u′(a) + u′′(a)× (b− a)

for a, b > 0. Provide an interpretation based on precautionary behavior, as studied in
chapter 3. (Hint: what happens when ρ = 1?)

Exercise 5.3. In this numerical exercise, we numerically solve the general equilib-
rium effects of the introduction of a realistic unfunded pension system. Following the
setup of chapter 2, firms produce consumption goods using labor and physical capital
through the production function

f(k, n) = kαn1−α.

Capital depreciates at a rate δ, and the expressions

rt + δ = α(kt−1/nt)α−1

wt = (1− α)(kt−1/nt)α
(5.9)
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provide first-order conditions for optimality when firms do not profit. Since households
do not work in period two, r2 = −δ. There is no senior age endowment e.

As in the main text, senior households of generation A have a probability ρ of
receiving a pension installment of φ consumption goods. The installment is financed by
a flat, marginal tax τ on labor income (different from the lump-sum tax of the main
text). The government initially has no public debt, and adopts a balanced budget in all
periods, which requires ρφ = τnB1 .

Using the end-of-period notation, generation A households enter period zero with a
net wealth of d−1 = k−1. The market-clearing condition in the capital market is

dt = kt t = 0, 1. (5.10)

Utility of generation A is similar to that of the text

u(cA0 ) + v(1− nA0 ) + βE
[
u(cA1 )

]
,

with isoelastic u and v:

u(c) = c1− 1
γ − 1

1− 1
γ

and v(`) = `1− 1
ψ − 1

1− 1
ψ

.

The utility function of generation B is analogous. For the baseline calibration, use
α = 0.5, β = 0.8, δ = 0.1, γ = 0.5, ψ = 0.8, ρ = 0.5 and φ = 0.1. The initial stock of
physical capital is k−1 = 1.

(a) Write the consumption-savings problem faced by households of generation A.
Consider a grid D of household net wealth points:

0.05 = d1 < d2 < · · · < d1000 = 0.6

Write a function that takes as given w0, r0, r1, ρ and φ, and returns the optimal choice
of d0, cA0 , c̃A1 , cA1 and nA0 , by households of generation A.

To solve the problem, you need to compute the utility of selecting each candidate net
wealth position d ∈ D, and then choose the point that maximizes it. Hint: to compute
the optimal labor supply choice associated with a point d, use the function you wrote
in Exercise 4.2. of chapter 4. It needs to solve

w0u
′(w0n

A
0 + (1 + r0)d−1 − d0) = v′(1− nA0 ).
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(b) Write the consumption-savings problem faced by households of generation B.
Using the same grid D, write another function, that takes as given w1, r1 and τ , and
returns the optimal choice of d1, cB1 , cB2 and nB1 by households of generation B. The
algorithm should be similar to the one you wrote in (a).

(c) You have solved households’ consumption-savings problems. Now, you need
to find market-clearing prices. By (5.9), wage and interest rates depend only on the
capital-labor ratio knt = kt−1/nt. It is therefore easier to search for two market-clearing
capital-labor ratios kn0 and kn1, then the four prices w0, r0, w1, r1. You also need to
ensure that the pension system is budget-balanced through proper selection of the tax
rate τ . We group these variables in a single solution vector x:

x =


kn0

kn1

τ

 .

Adopt an iterative procedure. Start by guessing a solution vector x0 = [1, 1, 0]. In
iteration i, fix xi and solve households’ problems using (a) and (b). Use the market-
clearing condition (5.10) along with optimal labor supply to compute resulting capital-
labor ratios:

k̂n0 = k−1

nAi0

k̂n1 = di0
nBi1

= ki0
nBi1

(the i superscript indicates the iteration). Then, use the balanced-budget condition to
find fiscally sustainable pension benefits τ = ρφi/nBi1 .

Define x̂ = [k̂n0 k̂n1 τ̂ ]. If x̂ = xi, stop. You have found the solution vector, with
equilibrium capital-labor ratios and pension benefits. Otherwise, update the candidate
solution vector using damping

xi+1 = 0.5× x̂+ 0.5× xi.

and move to the next iteration. (Remember to include a maximum number of iterations
in your code to avoid an endless loop of the algorithm.)

(d) Repeat your numerical computation, but shut down the pension system: φ = 0.
Your solution vector should yield τ = 0. How does shutting down the pension system
affect equilibrium aggregate consumption, stock of capital, interest and wages? Explain
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intuitively.
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Chapter 6

Classical Theories of
Monetary-Fiscal Interaction

6.1. Public Finances in the Presence of Currency
We change the nature of public bonds. Up until now, one public bond gave its holder the
right to one consumption good upon maturity. We call these real bonds. In this chapter,
we study fiscal policy in the presence of nominal bonds. Upon maturity, nominal bonds
redeem for one unit of currency. Currency (or money, or cash) is a commodity that only
the government can produce, at no cost. The price level Pt is the price of a consumption
good in units of currency.

We use capital letters to denote nominal variables, and lowercase to denote real
variables: Bt denotes quantities of nominal bonds, as bt denoted real bonds previously.
Qt is the price of a nominal bond in cash units (similar to qt). The implied return on
nominal bonds

1 + it = 1
Qt

is the nominal interest rate. The growth in the price level is the inflation rate:

1 + πt = Pt
Pt−1

.

The real interest rate is the return on an investment in the nominal bond in terms of
real goods. As you can see below, it coincides with the ratio of nominal interest and
next-period realized inflation:

1 + rt = 1/Pt
Qt−1/Pt−1

= 1 + it−1

1 + πt
.
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The balance of money held by households in the beginning of period t is Mt, and
mt = Mt/Pt denote its real value (or the amount of consumption goods it can purchase).

We return to our two-period setup, but it is easier for the exposition to discuss each
period separately.

6.1.1. Period One

At the beginning of period one, the government redeems B0 maturing bonds for currency,
which moves to the hands of households. Then, the government announces lump-sum
taxes τ1 and public spending g1, both stated in units of consumption goods. The real
primary surplus is s1 = τ1−g1. Taxes and public spending are paid with cash. Therefore,
by running a primary surplus, the government removes money from circulation. The
borrowing constraint faced by the government is

B0 = P1s1 + (M1 −M0) = P1s1 + ∆M1. (6.1)

(The world ends in t = 2, so households do not buy new bonds.) The interpretation of
(6.1): the cash the government uses to redeem bonds B0 (left side) is either removed
from circulation by surpluses P1s1 (right side) or added to households’ stock of money
∆M1 (right side).

The term ∆Mt is called seignorage. It is the revenue obtained by the government for
having the right to issue money. We can split the real revenue raised through seignorage
between the growth rate of real money stock and a term representing the inflation tax :

Seignorage = ∆Mt

Pt
= ∆mt︸ ︷︷ ︸

Real Money
Growth

+ πt
1 + πt

mt−1︸ ︷︷ ︸
Inflation

Tax

.

The inflation tax represents the loss in purchasing power of money over time.
Adding +M0 on both sides of (6.1) yields

V0 ≡M0 +B0 = P1s1 +M1. (6.1a)

V0 is the amount of circulating cash after the government redeems bonds at the beginning
of period one, comprising currency households brought from period zero M0, and new
cash introduced from bond redemptions B0. You can regard V0 as the "total" size of
public debt. The government must "repay" this amount either by running surpluses, or
by relying on households to hold currency at the end of period one. Why households
would accept holding cash M1 > 0 when they do not demand bonds B1 = 0 is the topic
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of the next section.

6.1.2. Active Monetary vs Active Fiscal Models

The introduction of nominal debt blurs the connection between budget constraints
and default-averting surpluses. In the models with real debt considered in the previous
chapters, public budget constraints assigned a required level of primary surplus to avoid
a public default:

b0 = s1. (6.2)

Since the government cannot create consumption goods, it must tax households to
procure them, and then repay bondholders. Nominal debt, on the other hand, redeems
for currency, a commodity the government can create and thus never needs to default
on - regardless of s1. Therefore, in principle, there is no minimal primary surplus the
government needs to announce to prevent a default. At the beginning of the period one,
the government redeems $10 dollars in debt (or $100, or $1,000) by issuing currency,
and then announces taxes of one good per household (or two, or three). Cash obligations
do not restrict surpluses.

The budget constraint does constraint surpluses, given the price level. The "given
the price level" clause is a major difference between the purely real economy models of
the previous section, and the monetary models we study in this one. To understand
that difference, divide both sides of (6.1) by the price level:

B0

P1
= s1 + ∆M0

P1
. (6.1b)

Real debt = real public income. Comparing the budget constraint in the monetary
model (6.1b) with its real-model counterpart (6.2), we see two differences. First is the
seignorage term on the right, which we discuss later. Second, and most importantly,
the price level P1 now shows up on the denominator on the left-hand side, which makes
real debt no longer a predetermined variable. A higher price level in period one reduces
the real value of nominal bonds. The government owes less to bondholders, in terms of
consumption goods. In that case, the budget constraint (6.1b) says that the associated
primary surplus (plus seignorage) is smaller.

Whether (6.1b) pins public revenue given prices, or prices given public revenue is a
question of large debate in the literature, and divides the set of monetary-fiscal models
in two. Active monetary, passive fiscal models have been the most common assumption.
In it, the government observes the price level P1 (whose equilibrium value is determined
elsewhere in the model), and announces enough surpluses to guarantee that the budget
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constraint (6.1b) holds. The reason behind the name "active monetary" will become
clear when we discuss money demand and the price level in equilibrium. Active fiscal,
passive monetary models are the basis for the fiscal theory of the price level, a (mostly)
more recent approach. In it, the government announces primary surpluses regardless of
the price level - we have seen that it can do this. Households’ willingness to hold on
to cash, and their own budget constraint then imply that the equilibrium price level
satisfies the public budget constraint (6.1b).

In this section, we focus on active monetary models. We study the fiscal theory of
the price level in the next chapter.

6.1.3. Period Zero

We move one period backwards. In period zero, the story is similar. The key difference
from period one is that, in period zero, the government can sell nominal debt - which
also removes money from circulation. Households start with M−1 units of currency and
B−1 nominal bonds. They pay Q0B0 in cash to the government in exchange for B0

public bonds. The budget constraint in period zero becomes

B−1 = Q0B0 + P0s0 + ∆M0. (6.3)

On the left side, currency put in circulation through bond redemption; on the right,
where it flows to: new bond purchases, tax payments (net of public spending), or
households’ pockets. Like before, we can re-write this budget constraint in terms of the
total size of government debt after bond redemption, Vt = Bt +Mt:

V−1 = Q0V0 + P0s0 + (1−Q0)M0. (6.3a)

The government can "repay" debt by issuing more debt at a price Q0 or by running a
primary surplus. The last term

(1−Q0)M0 = i0
1 + i0

M0

represents the convenience yield obtained by the government for "selling" money, a debt-
like asset that pays no interest. When i0 = 0, bonds and currency become economically
identical, and the convenience yield vanishes.
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6.2. Money Demand and the Equation of Exchanges

6.2.1. Households and Preference for Liquidity

In frictionless models, households do not demand currency, because currency does not
pay interest. Nonzero demand for currency therefore requires the existence of frictions
in the economy that renders money valuable. These frictions are usually motivated
by the idea that, in reality, money has some special "quality" that facilitates trade.
If you inadvertently come cross that handcrafted bow tie you were looking for, you
cannot instantly sell your bonds to pay the tailor (or just transfer them to him/her);
you have to have money on your wallet. Admittedly, as payment technologies evolve,
justifying such frictions becomes harder. Nevertheless, because MV = PY continues to
be heavily employed in the academic literature, we proceed under the assumption that
these frictions are well justified.

Capture households’ preference for liquidity through the money-in-the-utility func-
tion formulation. Endowment economy, no production. Natural borrowing limit.

Max
c,M,B0

u(c0) + h(m0) + β [u(c1) + h(m1)]

Q0B0 +M0 + P0c0 ≤ B−1 +M−1 + P0(y0 − τ0)
P1c1 +M1 ≤ B0 +M0 + P1(y1 − τ1)
c,M ≥ 0.

(6.4)

Function h satisfies usual assumptions: twice differentiable, increasing and concave.
Recall that mt = Mt/Pt: households have preferences for real holdings of money.

First-order condition for public bonds:

Q0u
′(c0) = β

u′(c1)
1 + π1

=⇒ u′(c0) = β(1 + r1)u′(c1) (6.5)

Equation (6.5) is the same first-order condition we find in the real-bond model.
First-order condition for money balances in period zero:

u′(c0) = h′(m0) + β
u′(c1)
1 + π1

(6.6)

Interpration: marginal utility cost of increasing money balance (left side) equals marginal
utility benefit (right side).
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First-order condition for money balances in period zero:

h′(m1) = u′(c1) (6.7)

From (6.5) and (6.6):
h′(m0) = (1−Q0)u′(c0) (6.8)

The marginal utility of one additional real unit of currency equals the utility cost of the
convenience yield. Like we did for public budget constraints, we can re-write households’
constraints and its entire optimization problem in terms of total assets Vt = Bt +Mt

and the conveniece yield, as follows.

Max
c,M,B0

u(c0) + h(m0) + β [u(c1) + h(m1)]

Q0V0 + (1−Q0)M0 + P0c0 ≤ V−1 + P0y0

P1c1 +M1 ≤ V0 + P1y1

c,M ≥ 0.

(6.9)

6.2.2. Central Bank and Equilibrium

The monetary authority (or the Central Bank) inelastically supplies money in both
periods, M0 and M1. We also fix public spending g, and assume passive fiscal policy:
the government chooses taxes τ to satisfy the budget constraint at the equilibrium price
level.

In equilibrium, yt = gt + ct. Therefore:

1 + r1 = 1 + i0
1 + π1

= u′(y0 − g0)
βu′(y1 − g1) (6.10)

h′(m0) = i0
1 + i0

u′(y0 − g0) (6.11)

h′(m1) = u′(y1 − g1) (6.12)

(in (6.11) we have replaced 1−Q0 = i0/(1 + i0)).
Expression (6.10) determines the real interest rate. Like in the real economies of the

previous sections, the interest rate is marginal rate of substitution between consumption
in periods zero and one. Importantly, Central Bank activity does not affect the real
interest rate - a property of models in which prices are flexible.

Expressions (6.11) and (6.12) are the first versions we encounter of the celebrated
equation of exchanges:

MtVt = Ptyt. (6.13)
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As originally written down by Irving Fisher, the equation of exchanges (or simply
MV=PY) posits that demand for cash (M) balances is directly proportional to the
nominal volume of transaction, which we usually approximate using aggregate nominal
income (Py). The scaling constant V is the velocity of money. The name follows from
the (somewhat loose) interpretion of the PY -to-M ratio as the number of times agents
use the same unit of currency to make a purchase.

Equation (6.12) pins down P1. Equation (6.11) jointly determines P0 and the i0. The
fact that the Central Bank choice of money supply determines the price level justifies
the designation of the model as an "active monetary" model.

While our framework has microfounded some version of MV = PY , equation (6.11)
does not necessarily lead to a version of (6.13). The exercises consider a particular case
of isoelastic u and h in which it does. Yet, in general case, (6.11) implies a positive
relationship between real money balances m0 = M0/P0 and real income y0 (even if
the latter is shifted by public spending g0). Fixing public spending, higher income
y0 corresponds to higher consumption in equilibrium, therefore wealthier households.
Wealthier households demand more real money balances. Now you can see how the
money-in-the-utility-function formulation captures the idea that more income asks for
larger holdings of cash.

In the case of period zero, expression (6.11) also shows that, for a fixed y0, demand
for real holdings of currency are decreasing (thus "velocity" is increasing) in the nominal
interest rate. Intuitively, higher interest rates increases the opportunity cost of holding
on to currency.

Monetarism and backing theories

6.2.3. Seignorage

Central bank activity and seignorage as a means of financing government’s deficits.
Real seignorage depends households’ acceptance of cash holdings (velocity). Start with
a general equation of exchanges, in which velocity depends on nominal interest:

MtV (it) = Ptyt

Taking difference (assume fixed interest rate it = i):

∆(MtV (i)) = ∆(PtYt) =⇒ V (i)∆Mt = Pt∆yt + yt∆Pt
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Let gt = ∆yt/yt−1 be real income growth. Manipulating the expression above yields

V (i)∆Mt

Ptyt
= gt

1 + gt
+ πt

(1 + gt)(1 + πt)
.

We can roughly simplify the denominators on the right to one, which leads to the
convenient expression

∆Mt

Ptyt
= gt + πt
V (r + πt)

. (6.14)

The left side of the (6.14) is real seignorage, as a share of aggregate real income.
How does the seignorage revenue depend on the inflation choosen by the Central

Bank? We take logs (we are interested in relative, not absolute changes), and differentiate
(6.14) with respect to πt to find

∂ logMt/(Ptyt)
∂πt

= 1
gt + πt

− ∂ log V (r + πt)
∂πt

(6.15)

If the elasticity of money velocity is large, more inflation can reduce the seignorage
term, as households run from cash - and that effect exceeds the inflation tax.

To find the revenue-maximizing inflation rate, equate (6.15) to zero. We find

gt + πt =
[
∂ log V (r + πt)

∂πt

]−1

.

The revenue-maximizing inflation rate depends negatively on the elasticity of velocity.

6.3. Cagan’s Model of Hyperinflations
We begin to study monetary-fiscal interactions.

Cagan (1956) considers hyperinflation events, which he defines as monthly inflation
rates superior to 50%. Cagan argues that, during hyperinflation episodes, the equilibrium
values of real variables are independent of variation in the price-level. In the context of
a monetary model, one can then abstract from variation in the real interest rate rt and
in aggregate income yt.

Cagan posits a (log) money demand equation of the format

m̂t + ηit = pt, (6.16)

where m̂t = logMt (not to be confused with mt = Mt/Pt), and pt = logPt. The term
ηit captures money velocity, which is a function of nominal interest, and hence of real
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interest (constant, we can normalize to zero) and expected next-period inflation πet+1.
Parameter η is the elasticity of (log) money velocity with respect to inflation ∂ log V/∂π.

Cagan assumes adaptive expectations, meaning that expected inflation depends on
past inflation rates. For simplicity, we assume that it coincides wiht current inflation:

πet+1 = pt − pt−1.

(Since pt is log price level, pt − pt−1 ≈ πt.)Equations (6.16) becomes

m̂t + η(pt − pt−1) = pt. (6.17)

or, yet:
pt = η

η − 1pt−1 −
1

η − 1mt.

If η > 1 (velocity highly elastic), inflation can be driven by momentum. Inflation leads
to a decline in velocity, which induces more inflation. Additionally, as velocity declines,
seignorage generates less and less revenue to the government.

6.4. Unpleasant Monetarist Arithmetic
Throught their seminal paper, Sargent and Wallace (1981) were the maybe first to
consider the implications of active fiscal policy to price level determination. Active fiscal
policy means that, instead of adjusting surpluses s to satisfy (6.1b), the government
fixes s. To prevent a government default, the Central Bank at some point must increase
money supply enough to generate large enough seignorage revenues. The "unpleasant"
tautology follows from the fact that, the longer the Central Bank waits to monetize
public debt, the more inflation is required to prevent the default.

Like the original paper, it is easier to cast the model using real debt (although
the concepts holds with nominal debt too - see the exercises). Real debt is paid with
currency at the beginning of each period, so the government’s budget constraints are

P0b0 = P0q0b1 + P0s0 + ∆M0

P1b1 = P1s1 + ∆M1.
(6.18)

The present-value budget contraint is

b0 =
(
s0 + ∆M0

P0

)
+ q0

(
s1 + ∆M1

P1

)
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Replacing the expression for seignorage (6.14) yields:

b0 =
(
s0 + ∆m0 + π0

1 + π0
m−1

)
+ q0

(
s1 + ∆m1 + π1

1 + π1
m0

)
. (6.19)

Sargent and Wallace assume the equation of exchanges (6.13) holds in both periods,
with the same constant velocity V0 = V1 and aggregate output y0 = y1. Consequently,
demand for real holdings of money is constant: ∆m0 = ∆m1 = 0, and seignorage
coincides with the inflation tax.

We start with an equilibrium (M,P ), and consider a different equilibrium (M ′, P ′).
In this second equilibrium, the Central Bank decides to reduce money supply in period
zero: M ′

0 < M0. Active fiscal policy remains unchanged: s′ = s.

1. By MV=PY, P ′0 < P0, so π′0 < π0.

2. Lower inflation means lower inflation tax in period zero. Given constant surpluses,
public debt at the end of period zero is larger in the second equilibrium.

3. With a larger debt, in period one the Central Bank must raise money supply to
generate enough seignorage revenues and prevent a default: M ′

1 > M1.

4. By MV=PY, P ′1 > P1.

Lower money supply in period zero reduces inflation in period zero, but increases it
in period one. Additionally, (6.19) and q0 < 1 imply that the increase in inflation rate
in period one required to prevent a default is larger than its period-zero decline. The
longer the Central Bank takes to monetize debt, the larger the required issuance of
money - and thus the larger the ensuing rise in inflation.

Exercises
Exercise 6.1. Suppose the Central Bank announces at the beginning of period

zero that it will double money supply, compared to what agents previously expected:
M ′ = 2×M . Based on the micro-founded money demand equations (6.11) and (6.12),
how will the new policy affect: (a) the price level in each period; (b) the inflation rate
in each period (you can take as given the price level in t = −1, P−1); (c) the interest
rate in period zero i0?
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Exercise 6.2. Suppose g0 = 0. Assume u and h are both isoelastic period utility
functions, i.e.:

u(x) = h(x) = x1− 1
γ − 1

1− 1
γ

.

(a) Using equilibrium condition (6.11), and define a velocity of money variable V0

that satisfies the traditional equation of exchanges

M0V0 = P0y0.

When we increase the elasticity of intertemporal substituion γ, does the velocity get
more or less responsive to variation in the nominal interest rate?

(b) Repeat (a) for the equilibrium condition (6.12). What is the velocity of money
in period one?

Exercise 6.3. Suppose u(c) = log(c) and h(m) = log(m). Use your result from
exercise Exercise 6.2. to compute money velocity. Let 1+gM = M1/M0 be money supply
growth. Use equilibrium conditions (6.11)-(6.12) to compute nominal interest rate i0 as
a function of real interest r1 and gM .

Exercise 6.4. Cagan’s model with forward-looking expected inflation (Kenneth
and Rogoff).

Exercise 6.5. Consider the unpleasant arithmetic environment, and the experiment
of a money supply reduction in period zero by the Central Bank, but suppose that debt
is nominal instead of real.

(a) How does the present-value budget constraint (6.19) change if we consider
nominal instead of real debt?

(b) Suppose that initially (i.e., before the announcement of the change in money
supply) the equilibrium values of fiscal surpluses, money stock and price level are the
same, in t = 0 and t = 1. The reduction in money supply calls for a greater or a smaller
increase in period-one price level? Explain intuitively.
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Chapter 7

The Fiscal Theory of the Price Level

7.1. The Basic FTPL Model
This chapter is mostly based on Cochrane (2023).

As in the previous chapter, it is easier to first discuss the fiscal theory of the price
level in a one-period setting, and then generalize the intuition to multiple periods. So
we start by focusing in period one.

7.1.1. Period One: Fiscal Theory in a One-Period Setup

We consider the same environment of chapter 6. Households bring B0 nominal public
bonds from period zero. At the beginning of period one, the government redeems these
bonds for currency, which moves to the hands of households, and announces a lump-sum
tax of τ1 > 0. For simplicity, there is no public spending. The market for consumption
goods opens, and the price level P1 forms. Finally, households pay taxes using cash.

Fiscal policy is active. The government chooses a fixed primary surplus that does not
respond to other economic variables. Because it does not demand goods, the primary
surplus is s1 = τ1 > 0. There is nothing wrong or unnatural in having the government
choose real taxation independently of public nomional debt. Because nominal bonds
redeem for currency - a commodity the government can create at zero cost -, debt
obligations do not constraint real surpluses. The government’s budget constraint

B0 = P1s1 + ∆M1, (7.1)

has a different interpretation, which is: the cash used to redeem bonds B0 must either be
retired by public taxation P1s1 or voluntarily absorbed by households ∆M1 = M1−M0

(Mt denotes stock of currency).
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Moving to the household side, we adopt an environment similar to that the previous
section, except that households have no preference for liquity. We want what one can
call a "neoclassical" model, in which money has no special property. As such, contrary
to chapter 6, households’ utility

u(c0) + βu(c1)

does not depend on real money holdings mt = Mt/Pt. Other than that, each household
has a fixed endowment of y1 consumption goods, and chooses its consumption level c0

and money holding M1 subject to the budget constraint

P1c1 + ∆M1 = B0 + P1y1 − P1s1. (7.2)

The right-hand side of (7.2) implies that the household cannot spend the entirety of its
available cash B0 + P1y1. At the end of period one, it must have P1s1 units of currency
left to pay out the government.

We are interested in determining the equilibrium price level P1. In equilibrium,
the market for goods clears: c1 = y1. In addition, because money offers no value to
households, their demand for cash is zero: M1 = 0. For a similar reason, households do
not bring money from period zero M0 = 0. Hence, ∆M1 = 0. Replacing these conditions
into (7.2) leads to an expression that pins down the equilibrium price level:

B0

P1
= s1. (7.3)

The emergence of the equilibrium price level as the solution to (7.3) follows directly
from household optimal behavior, and equilibrium in the goods market. When acting
on the market for goods, households choose to set aside exactly the volume of cash
necessary to pay taxes.

B0 + P1(y1 − c1)︸ ︷︷ ︸
Currency left after

market for goods closes

= P1s1.

Setting aside less than P1s1 units of currency forbids a household from paying all due
taxes. Setting aside more than P1s1 forces the households to hold currency, which
offers no value. And what is the volume of currency households set aside in the market
for goods? Equilibrium in the goods market implies that any volume of currency
accumulated by a household for selling a good must be spent by another household
who buys it: P1y1 = P1c1. Hence, the volume of currency on the pockets of households
after the market for goods closes equals B0 - the volume of currency introduced by the
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government through bond redemption. Equation (7.3) emerges.
We can interpret the equilibrium in terms of movements in "aggregate demand".

Let P1 be the solution to (7.3). If the price level was P ′1 > P1, so that B0 < P ′1s1,
households would not have enough currency to pay taxes, which would force them to
reduce demand for goods. As all households attempted to reduce consumption, the
price level would decline until it reached P1. The analogous story explains why P ′1 < P1

cannot be the equilibrium price level.
We can also interpret the equilibrium in terms of a nominal volume relative to a

real volume. The fiscal theory of the price level is a backing theory, similar to active
monetary models based on MV=PY. The nominal volume is the stock of nominal debt
B0. The real volume is the flow of (real) primary surpluses. For the same announcement
of primary surpluses, larger stocks of nominal debt lead to greater price levels.

7.1.2. Period Zero: Fiscal Theory in a Two-Period Setup

We move one period backwards to understand price level formation in an interperiod
model. The price of a nominal bond in period zero is Q0. The budget constraints for
the government and households become

Q0B0 + P0s0 + ∆M0 = B−1 (7.4)
Q0B0 + P0c0 + ∆M0 = B−1 + P0y0 − P0s0. (7.5)

In equilibrium, y0 = c0 and M−1 = M0 = 0. Constraints (7.4) and (7.5) lead to the
following flow equation for real public debt:

B−1

P0
= s0 + Q0B0

P0
(7.6)

Like in period one, surpluses soak up currency, but now so do the sales of new public
bonds, which raises Q0B0 units of currency in revenues to the government.

The usual household consumption-savings problem leads to the Euler equation

u′(c0)Q0 = β
P0

P1
u′(c1).

Henceforth, we assume constant output y0 = y1, which implies c0 = c1 and that the
real interest rate is 1/β in equilibrium. (If you find y0 = y1 too hard of an assumption,
call 1/β the real interest rate and proceed with no restrictions on y.) In any case, the
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equilibrium price of the nominal bond is:

Q0 = 1
1 + i0

= β
P0

P1
. (7.7)

Replacing (7.7) in the flow equation (7.6) yields

B−1

P0
= s0 + βs1. (7.8)

Equation (7.8) generalizes (7.3). It is known as the valuation equation of public debt.
Given the sequence for primary surplus s and the predetermined size of public debt
B−1, it determines the price level in period zero P0.

Equilibrium in period zero translates the same intuition as that of period one.
Households run towards or away from currency until they have just enough to pay
for their taxes. That is the interpretation of equation (7.6) - note that (7.6) is an
equilibrium conditions, not a budget constraint. Such household behavior, coupled with
a predetermined volume of public debt, determines the price level. The key difference
we find in period zero is that households also set aside cash to pay for new nominal
bonds. How much? The equilibrium we computed in period zero shows that the real
revenue raised by the government with new bond sales equals βs1. Hence the connection
between period-one surpluses and period-zero price level.

7.1.3. Fiscal and Monetary Policy

Fiscal policy: changes to s = (s0, s1) lead to changes in the price level in both periods.
Connection between debt/deficits and inflation? Not necessarily: households can

expect future surpluses that repay large debt at a given price level. Be careful with the
branding "active fiscal"!

Monetary policy: changes to B0 unaccompanied by changes to primary surpluses.
Since

Q0B0

P0
= βs1,

and since P0 is determined by the valuation equation (7.8), if the Central Bank sells
additional units of B0, then Q0 must fall to the point that bond sales revenue Q0P0

remains unchanged. Thus, the Central Bank faces a unit-elastic demand for public
bonds. Instead of fixing bond sales B0, it can fix Q0 (and nominal interest rate) and
elastically offer B0 - a horizontal supply curve of public bonds.

Effect of bond sales on inflation? The Fisherian effect: higher nominal interest leads
to higher inflation. Intuition?
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7.2. Expected and Unexpected Inflation
Environment with surplus risk. Primary surplus (in both periods) is a random variable
which households do not know in the previous period.

In the presence of uncertainty, the price of a nominal bond becomes

Q0 = 1
1 + i0

= βE0

[
P0

P1

]
. (7.9)

Replacing (7.9) on (7.6) gives a new version of the valuation equation:

B−1

P0
= s0 + βE[s1]. (7.10)

Equation (7.9) shows that monetary policy - the setting of nominal interest by the
Central Bank - pins down expected inflation.

Let
∆Et = (Et − Et−1)

be the innovation operator. For a random variable whose value is unknown prior to
period T ≥ t,

∆EtxT = EtxT − Et−1xT

captures the revision in expectation of xT . In particular, when T = t:

∆Etxt = xt − Et−1xt

captures the unexpected component of the realization of xt relative to expectation in
t− 1.

Taking the innovation operator in (7.3):

B0

P0
∆E1

(
P0

P1

)
= B0

P0
∆E1

( 1
1 + π1

)
= ∆E1s1

Unexpected inflation in period one is pinned down by fiscal policy. The same is true in
period zero:

B−1

P−1
∆E0

( 1
1 + π0

)
= ∆E0s0 + β∆E0s1.

7.3. A Fiscal Theory of Monetary Policy
We explore two extensions that make monetary-policy interactions more interesting.
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7.3.1. A Price-Level Target

Instead of fixing a level of primary surplus s1, the government observes the level of debt
in period zero and establishes a price level target P ∗1 . It then sets primary surplus to
guarantee that price level in equilibrium:

s1 = B0

P ∗1
(7.11)

In period zero:
B−1

P0
= s0 + β

B0

P ∗1
. (7.12)

Given the price target, the government can finance a period-zero deficit (s0 down)
by issuing new bonds (B0 up) without affecting the price level. The increase in bond
issuance comes accompanied by the implicit promise of an increase in surpluses in
period one, so that (7.11) holds.

Monetary-fiscal interaction: suppose the Central Bank raises B0 to reduce bond
price Q0. In period one, the government raises s1 accordingly: price level P ∗1 unchanged.
Thus, with the price-level target, monetary policy interacts with fiscal policy! In period
zero, P0 declines by (7.12). Inflation from period zero to one increases, implying that
nominal interest increases as well. But the fact that the price level declines in period
zero gives a perhaps comforting result: an interest rate rise reduces current inflation
P0/P−1.

7.3.2. Model with Long-Term Debt

Second pathway to generate higher interest leading to lower inflation. Instead of one-
period bonds only, bonds can have any maturity. Qn

t is the price of a bond that promises
the delivery of one unit of currency after n periods. (So far, we have dealing only with
Qn=1
t .)
The government cannot sell bonds maturing after period one. Therefore equilibrium

condition (7.3) continues to hold. In period zero, the flow equation of government debt
is

B0
−1 = P0s0 +Q1

0(B1
0 −B2

−1)

The parenthesis term on the right represents the amount of currency the government
retires by selling additional nominal bonds maturing in period one. We can re-write it
in real terms

B0
−1 +Q1

0B
2
−1

P0
= s0 + Q1

0B
1
0

P0
(7.13)
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Replacing (7.3) gives the new version of the valuation equation in period zero:

B0
−1 +Q1

0B
2
−1

P0
= s0 + βs1 (7.14)

The left-hand side contains the real market-value of public debt in the beginning of
period zero.

Suppose that the Central Bank fixes a target for Q1
0 (interest rate), and sells one-

period bonds accordingly. Primary surpluses s remain constant. What are the effects of
an increase in nominal interest, or a decline in Q1

0? Higher interest reduces the price of
nominal bonds, and hence the market value of public debt - the left-hand side of (7.14).
This is the major difference compared to the one-period bond case. The equilibrium
price level in period zero P0 declines. We again see tighter monetary policy lead to a
decline in current inflation.

Nevertheless, to raise nominal interest, the Central Bank increases sells more one-
period bonds (an exercise asks you to prove that claim), leading to more inflation in
period one. Higher inflation validates the Fisher relationship.

7.4. Observational Equivalence
Is it possible to test active vs passive fiscal policy? To answer that question, we compare
the equilibrium conditions that arise from the active monetary models of chapter 6
with the equilibrium conditions from the FTPL. To do a valid comparison, we need to
relax the assumption the households do not value currency. Therefore, consider that
households have preferences and solve a consumption-savings problem similar to those
assumed in the previous chapter:

Max
c,M,B0

u(c0) + h(m0) + β [u(c1) + h(m1)]

s.t. Q0B0 +M0 + P0c0 ≤ B−1 +M−1 + P0(y0 − τ0)
M1 + P1c1 ≤ B0 +M0 + P1(y1 − τ1)
c,M ≥ 0.

(7.15)

Function u and h satisfy the usual assumptions (increasing, concave, twice differentiable).
We call mt = Mt/Pt real money holdings. The government charges lump-sum taxes
τ = (τ0, τ1) and demands g = (g0, g1) consumption goods in the market. The difference
s = τ − g is the primary surplus series.

Computing the first-order conditions of problem (7.15) and imposing that all markets
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clear yields the equilibrium conditions:

u′(y0 − g0) = β(1 + r1)u′(y1 − g1) (7.16)

h′(m0) = i0
1 + i0

u′(y0 − g0) (7.17)

h′(m1) = u′(y1 − g1) (7.18)

Equations (7.16)-(7.18) are the same equilibrium conditions as (6.10)-(6.12). Since
budget constraints are also the identical in both models, we conclude that the equilibrium
generated by active monetary and active fiscal models are the same. This result is
referred to as observational equivalence.

Active fiscal: B/P = PV (s) determines the price level. The Central Bank provides
an "elastic" currency, to satisfy trading needs. Active fiscal: The Central Bank fix the
supply of money, and MV = PY determines the price level. The government choses
surpluses to satisfy B/P = PV (s) at the price level effectively set by the Central Bank.

Exercises
Exercise 7.1. Public primary surplus in period one follows the distribution below.

s1 =

ȳ1 + z with prob. 1
2

ȳ1 − z with prob. 1
2

In period zero, the government inherits a debt of B−1 nominal bonds, and charges a
deterministic surplus of s0 consumption goods. Compute the price level in period zero
P0, expected period-one inflation E0P0/P1 and the unexpected component of inflation
in period one ∆E0(P0/P1).

Exercise 7.2. Consider again the environment with long-term debt. We want to
show that an increase in nominal interest lowers current inflation, but raises future
inflation.

(a) Assume B0
−1 > 0. Use equation (7.14) to argue that, as the Central Bank raises

nominal interest, Q1
0/P0 falls.

(b) Compute the real revenue raised by the government for selling new debt. Why
is real revenue unchanged? To sustain a higher nominal interest, does the Central Bank
sell more or less one-period debt in period zero?
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(c) Use the valuation equation to argue that, after falling in period zero, inflation
increases in period one.

Exercise 7.3. (Stock as Money.) The equilibrium condition (7.3) that yields the
price level in a FTPL model is an instance of an asset pricing equation: asset price
= discounted dividends. Primary surpluses act like "dividends" to public bonds, as
bondholders can use them to pay for taxes. The higher the taxes (or primary surplus),
the more valuable the nominal bond becomes. To formalize this analogy, in this exercise
we consider an alternative monetary model, in which agents use stocks of a representative
firm as currency.

There is no government. Each household has access to yt consumption goods in the
form of home production. The representative firm owns a technology that freely yields
dt consumption goods per period - this is known as a Lucas tree, following Lucas (1978).
The firm sells these goods to households, in exchange for its own stock. Households also
use stocks of the representative firm to carry out trade among themselves. The price of
one consumption good in terms of stocks is Pt.

(a) Write the market-clearing condition of the consumption goods market in each
period.

(b) Suppose households enter period one with X0 stock units. Write the household’s
budget constraint in period one, and then in period one. Importantly, there are no stock
splits or repurchases between periods zero and one. If the household ends period zero
with X0 stocks, that is the amount of stock it will begin period one with.

(c) Using the utility function u(c0) + βu(c1), where u is concance, differentiable and
increasing, find the Euler equation for firm stocks. Then, assuming that the aggregate
endowment series y + d is constant, show that

1
P0

= β
1
P1
. (7.19)

Intepret the equilibrium condition above.

(d) Impose the market-clearing conditions and (7.19) on households’ budget con-
straints to find the new valuation equations determining the price level:

X0

P1
= d1 and X−1

P0
= d0 + βd1

The stock price in terms of goods - the inverse of the price level - coincides with
discounted dividends (interpreting as dividends the output sold by the firm, or its
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profit). Interpret why a price level P ∗1 > P1 (where P1 is determined by the equation
above) cannot be an equilibrium price.
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Chapter 8

Fiscal Multipliers

Money multiplier = effect of a change in public spending or investment on national
income/output. We focus on public spending.

∆y
∆g

There is no single fiscal multiplier. In practice, multiplier depends on many factors,
such as the time schedule of the purchases and whether it is anticipated by households.

8.1. Keynesian Cross
The Keynesian Cross model is not a microfounded model, but it seems to base a lot of
policy discussions. The model posits a consumption function

c = α + φx, (8.1)

where c represents aggregate consumption and x represents aggregate income. Since
the model is static, we supress time subscripts. Parameter φ represents the marginal
propensity to consume and plays a critical role in the model.

In equilibrium, aggregate output y equals the sum of household and public spending:

y = c+ g = α + g + φx. (8.2)

Assuming a closed economy, national income coincides with national output: y = x. We
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y

x (aggregate income)

y = x

45o

c+ g = α + φx+ g

g + ∆g > g

∆g

∆y > ∆g

Figure 8.1: Equilibrium in the Keynesian Cross Model

then have the following solution to the Keynesian Cross model:

y = α + g

1− φ. (8.3)

The black curves in figure 8.1 represents the equilibrium described by the model, and
explains why we call it Keynesian "Cross". We find the equilibrium in the point in which
the aggregate demand curve c+ g, expressed as a function of national income, crosses
the identity line output income = output output.

The fiscal multiplier is
∂y

∂g
= 1

1− φ.

Higher public spending ∆g boosts aggregate demand c+ g, which leads to an increase
in output, and therefore an increase in income x. In turn, higher income further boosts
aggregate demand c+ g through the household consumption term, as households spend
a share φ of this new slice of income. Higher demand further increases output, and the
process continues. The overall effect on output and income is

∆y = ∆g + φ∆g + φ2∆g + · · · = ∆g
1− φ.

The fiscal multipliers increases with propensity to consume φ. The red curve in figure
8.1 depicts graphically the fiscal multiplier superior to one.

Criticisms:

· Constant marginal propensity

· Lack of constraints on aggregate supply

· Endogenous effects on wages and labor market
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· Impact of potentially higher taxes to finance public spending?

· Dynamics? Public debt? Effect on interest rates?

8.2. Equilibrium Model

8.2.1. Endowment Economy

The Keynesian cross model implicitly assumes that the economy disposes of enough
production capacity to fully attend the increase in aggregate demand following an
increase in public spending. The opposite is true in an endowment economy.

Consider two-period model with endowments and no physical capital. Households
receive yt consumption goods each period. You can interpret the endowment as home
production or as the equilibrium result of households that do not value leisure. Obviously,
the fiscal multiplier in the endowment economy is zero.

But how does the equilibrium form? In period one, the household budget constraint

c1 = y1 − τ1 + b0 (8.4)

and government budget constraint

b0 = τ1 − g1 (8.5)

combine to form the market clearing condition y1 = c1 + g1. Public budget constraint
(8.5) implies that an increase in public spending announced in t = 1 requires an increase
in taxation of similar magnitude, ∆τ1 = ∆g1. In turn, higher taxes pushes down
household consumption through (8.4), ∆c1 = −∆τ1. The overall effect on aggregate
demand is zero: ∆c1 + ∆g1 = 0.

The same story holds in period zero, and thus the fiscal multiplier continues to be
zero.

8.2.2. Basic Analytics with Elastic Labor Supply

Reference: Woodford (2011).
We keep the two period structure. Since the derivation below holds equally to each

period, we drop subscripts to simplify notation.
Period utility function u(c) + v(1− n), where u and v are increasing, concave and
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differentiable. Intratemporal optimality:

v′(1− n) = wu′(c) (8.6)

Production function f(n), concave. No physical capital. Firm optimization yields

f ′(n) = w. (8.7)

In equilibrium, y = c + g. By (8.6) and (8.7), marginal utility of leisure equals
marginal cost of reducing labor hours, in utility units:

v′(1− n) = f ′(n)u′(y − g). (8.8)

Let
h(y) = −v(1− f−1(y)) < 0

be a household’s "disutility of leisure" when the economy produces y consumption goods
(the minus sign reverses the utility of leisure intepretation). Differentiating h gives

h′(y) = v′(1− f−1(y))
f ′(f−1(y)) > 0.

Larger output demands lower leisure and thus lower utility derived from it. Since v
and f are both concave, h′′ > 0: producing more increases the marginal utility cost of
further increasing production.

We can re-express equilibrium condition (8.8) in terms of the marginal benefit and
cost of producing one more consumption good (rather than working one more hour),
from the household standpoint:

h′(y) = u′(y − g). (8.9)

Interpretation of (8.9)?
Define the elasticities

ηu = −u
′′(c)
u′(c) > 0 and ηh = h′′(c)

h′(c) > 0.

Differentiating (8.9) yields
ηh∆y = ηu(∆g −∆y)
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which leads to the fiscal multiplier:

∆y
∆g = ηu

ηu + ηh
∈ (0, 1). (8.10)

Why fiscal multiplier ∈ (0, 1)? Intuition? What is wrong with ∆y/∆g = 0? What is
wrong with ∆y/∆g = 1?

8.2.3. Real Interest and Policy Timing

The analytics above hold individually to periods zero and one. We now consider timing
effects. First case: Suppose that, in period zero, the government announces an increase
in public spending in period one, ∆g1 > 0, and that it will finance additional purchases
through higher period-one (lump-sum) taxes ∆τ1 > 0. How does that announcement
change period-zero equilibrium?

Households anticipate lower consumption in period one ∆c1 < 0. In the new
equilbrium:

q0u
′(c0) = βu′(c1 + ∆c1)

> βu′(c1)
(8.11)

In the new equilibrium in period zero, either: higher bond prices, lower consumption,
or both. Households attempt to increase savings to smooth consumption over time. Do
they?

Equilibrium in the goods market characterized by market clearing and labor supply
optimality condition:

f(n0) = c0 + g0 (8.12)
h′(1− n0) = u′(c0) (8.13)

(I assume an interior solution to labor supply choice, and continue to use the same
definition of h.) (8.12) establishes a positive relationship between consumption and
labor hours. (8.13) establishes a negative relationship. Therefore, there is, at most, a
single solution to both the system (8.12)-(8.13). In conclusion, equilibrium c0 and n0

are unchanged in the new equilibrium.
By (8.11), equilibrium requires ∆q0 > 0, and thus ∆r0 < 0. Intuitively, households

increase their demand for public bonds in an attempt to smooth the decline in public
consumption stemming for larger spending in period one. But the stock of public bonds
supplied by the government remains unchanged, as one can verify by writing down the
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government’s budget constraint. The bond market clears at a higher bond price, and
lower interest rate.

In the endowment economy case, consumption in period one falls as much as the
increase in public spending, as households have no margin to increase labor hours. As
a result, the economic motive to increase savings in period zero is stronger, and real
interest rates falls by a larger amount.

Second case: the government announces higher spending and taxes in period zero,
∆g1 = ∆τ1 > 0. Fiscal policy unchanged in period one. Applying the same logic as
before, ∆c1 = 0. From the Euler equation

(q0 + ∆q0)u′(c0 + ∆c0) = u′(c1) = q0u
′(c0).

Since ∆c0 < 0, ∆q0 < 0. Note that higher equilibrium real interest rates do not arise
as a result of larger public debt. Instead, they arise as a by-product of intertemporal
substitution by households.

Exercises
Exercise 7.1. Following the text’s example, consider again the period-zero effects of

the announcement of higher public spending in period one. Suppose that the government
decides to finance the higher speding through higher taxes in period zero, keeping taxes
unchanged in period one. Through the lenses of the model, is it correct to assert that
households would, in that case, demand less bonds and, hence, that the effect over bond
prices would be dampened? Explain.

Exercise 7.2. Consider a version of the two-period model with physical capital and
no labor supply. The production function is f(k) = rk, where r > 0 is a fixed parameter.
For simplicity, suppose that physical capital fully depreciates from one period to the
next (δ = 1, in the notation of chapter 2). Taxes τt are lump-sum. Households’ utility
function is

u(c0) + βu(c1),

where u is increasing, differentiable and concave.

(a) Write the market clearing condition in the goods market in periods one and two.

(b) Write the Euler equation governing households’ choice of net wealth at the end
of period zero.

(c) At the beginning of period one, the government announces an increase in public
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spending ∆g1 > 0, fully funded by an increase in taxation. What is the change in
aggregate output ∆y1?

(d) At the beginning of period zero, the government announces an increase in public
spending ∆g0 > 0, fully funded by an increase in taxation. What is the change in
aggregate output in period zero ∆y0? Use the three equilibrium conditions you have
derived to compute the fiscal multiplier in period-one output ∆y1/∆g0. What is the
intuition for a negative multiplier?

(e) At the beginning of period zero, the government announces an increase in perio-
one spending ∆g1 > 0, fully funded by an increase in τ1. Use the three equilibrium
conditions you have derived to compute the fiscal multiplier in period-one output
∆y1/∆g1. What is the intuition for a multiplier in the (0, 1) range?
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