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Abstract

I estimate a no-arbitrage affine model of the term structure to decompose observed Brazil-

ian yields and their response to identified monetary policy shocks. I introduce a GMM

procedure that, through the weighting of overidentifying moment conditions, allows to

control the amount of risk-premia information incorporated in the estimation of factors’

dynamics. Incorporating no risk-premia information is equivalent to estimating it by OLS.

Incorporating all information is equivalent to reproducing return-forecasting regressions.

Does that choice matter? In the case of Brazil, I present previously undocumented ev-

idence that the level factor accounts for the bulk (up to 92%) of long-term risk premia

spanned by the first three principal components of the term structure. Compared to a

model that reproduces this empirical pattern, OLS dynamics tends to understate term

premia in times of elevated term structure level, and overstate the persistence of monetary

policy shocks.

*Banco Safra. Email: liviomaya@gmail.com. I thank John Cochrane and Joaquim Levy for numerous useful
comments.
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1. Introduction

The objective of this paper is to decompose the term structure of forward rates in the Brazilian

economy between expected interest and term premium components. I estimate a quarterly

multifactor version of the Gaussian affine model (Dai and Singleton (2000)) by a new, two-step

generalized method of moments (GMM, Hansen (1982)). The GMM procedure includes or-

thogonality conditions associated to return-forecasting regressions, and can thus incorporate

information from long-term risk premia. The estimated model characterizes the conditional

distribution of interest rates and bond risk premia. I apply it to decompose: 1. the observed

time series of yields, and 2. the response of the term structure to monetary policy shocks

identified using high-frequency movements in market prices (Cochrane and Piazzesi (2002)).

The estimation of the model is a central contribution of the paper. The solution of the

affine model embeds a set of no-arbitrage restrictions on the dynamics of factors, bond

prices and expected returns (i.e., risk premia). These restrictions are most clearly represented

algebraically by a linear relationship involving: the physical (i.e., data-generating) distribution

of X, its risk-neutral distribution (which prices the term structure), and the distribution of

market prices of risk governing expected returns. We can freely set two of these distributions;

the third is endogenous.

Once you pick risk-neutral distribution parameters to fit observed yields, the overidentify-

ing restrictions of the affine model offer two paths to complete the estimation. They differ in

the information set used to select the remaining parameters. One option is to use the time se-

ries of X and estimate its physical dynamics using, for example, OLS (as Adrian et al. (2013));

the model then gives price of risk parameters. A different route is to focus on risk-premium

evidence to discipline the market price of risk, and then infer the physical distribution of X

from the restrictions (as Cochrane and Piazzesi (2009)). Bond return predictability gets clearer

as we increase investment horizons (Baker et al. (2003), Boudoukh et al. (2008), I present

evidence this is the case in Brazil). Hence, the key advantage of looking at expected return
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evidence is that it conveys information about the long-term dynamics of bond yields, and

hence of X. Such information is critical for decompositions of the term structure, as expected

interest is tightly connected to the persistence of interest rates.

I propose a new, two-step GMM estimation procedure that unifies these seemingly oppos-

ing approaches by converting them into separate types of moment conditions. There are three

of them: pricing moments, OLS moments and risk-premia moments. In the first step, I solve a

GMM problem that targets pricing moments. It chooses risk-neutral parameters to minimize

the distance between observed and model-implied yields.

The second step is the main novelty. Fixing the risk-neutral dynamics from the first

step, it solves another GMM problem, which now selects the physical distribution of X

(and, by extension, price of risk parameters). The GMM targets a set of overidentifying

orthogonality conditions on: 1. the residuals of the vector autoregression (VAR) governing X

(OLS moments); and 2. the residuals of the model-implied return-forecasting regressions

(risk-premium moments). Hence, it uses information from two sources: the time series of X,

and realized returns. The weighting matrix of the GMM problem captures the importance we

attribute to each set of orthogonality conditions. When giving all the weight to OLS moments,

we recover the OLS estimates of the physical law of motion of X. When giving all the weight

to risk premium moments, we replicate long-term return-forecasting regressions. I describe

all results in the paper using three weighting matrix choices: the one leading to OLS, the one

replicating return-forecasting regressions and an "intermediary" one that gives equal weight

to each targeted moment.

Besides providing a natural framework to work with overidentifying restrictions, the

GMM approach offers other advantages. It allows the comparison between competing

estimation strategies in a single setup. It provides a ready-to-use distribution theory for

point estimates. It does not require the introduction of measurement errors to deal with the

stochastic singularity problem of the affine model.

A second contribution of the paper is the application to the Brazilian bond market. Studies

3



of predictability in emerging economies are relatively scarce (Akgiray et al. (2016) and

Devpura et al. (2021) are recent examples), as many markets lack the required data or liquidity.

In the case of Brazil, we now have over ten years of market price data on long-term bond

prices, provided by the Brazilian Financial and Capital Markets Association (ANBIMA), to

study the connection between yields and risk premia.1

To discipline the choice of which risk-premium moments to include in the GMM estima-

tion, I run a series of return-forecasting regressions with the Brazilian data. Two patterns

emerge. First: bond excess returns are predictable. In particular, the commonly used level,

slope and curve factors of the term structure capture the bulk of predictability spanned by

yields. Predictability increases over investment horizons, and reaches 54% in the three-year

case. This pattern motivates me to use these three factors as state vector X in the affine model.

Second: as we increase investment horizon, movements of the level of the term structure

capture an increasing share - up to 92% - of the variance of risk premia spanned by X. To

the best of my knowledge, this is a previously undocumented pattern of Brazilian returns.

Long-term bond returns tend to be higher when the level of the term structure is higher.

One might find this result expected, and attributable to interest mean-reversion. But the key

information we take from the regressions refers to timing. It usually takes two years for the level

factor to deliver high returns. Over investment horizons of one year or less, when returns are

less predictable, the pattern vanishes: the level of the term structure explains returns about as

much as its slope and curvature.

Considering the empirical findings, I include in the GMM estimation the orthogonality

condition that defines the return-forecasting regressions for two-year investment horizons.

We want the affine model to replicate the return-predictive power of the level factor.

However, the GMM estimator that targets only OLS moments (i.e., the OLS estimate of

1Papers studying the Brazilian term structure typically use swap data on the overnight lending rate (the
DI rate). Datasets beginning prior to 2009 usually contain data on bonds with maturity up to two years. See,
for instance, Tabak and Andrade (2003), Osmani and Tabak (2008), Almeida and Faria (2014), Almeida et al.
(2015) and Faria and Almeida (2018). As I show in the text, availability of long-term bond yield data is critical to
identify the persistence of the risk-neutral distribution.
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the physical distribution of X) soundly fails to match risk-premium moments. The share of

two-year risk premia variance accounted for by the level of yields is lower - by as much as

half - than what is implied by return-forecasting regressions. Hence the OLS model leads

to risk premia dynamics at odds with the evidence. As we change the weighting matrix

of the GMM problem to privilege risk-premia moments, we get increasingly closer to the

return-forecasting regressions. On the other hand, model shocks become more correlated

with the state X.

How do these changes in the set of moments we focus affect the decompositions of the

Brazilian term structure? As we attribute more weight to risk-premium moments and thus

deviate from OLS, interest dynamics presents higher frequency and amplified cycles, particularly

in response to a level shock. Its impulse-response functions gain an "S" shape, as opposed to

an uniformly-decaying, AR(1) look under OLS. The faster and larger decline of interest after

a positive level shock leads to the higher expected returns the return-forecasting regressions

call for. Consequently, periods of elevated term structure level are more attributed to term

premia, since agents expect interest to decline faster and by a larger amount.

Finally, I also apply the model to decompose the effect of an identified monetary policy

shock on the term structure. Following the tradition started by Cochrane and Piazzesi (2002)

(also Gertler and Karadi (2015) and Nakamura and Steinsson (2018), for example), I identify

monetary surprises through changes in the interest implied by futures contracts around

policy rate announcements. Gomes et al. (2023) and Da Costa Filho (2021) follow a similar

approach using Brazilian data. Since model factors X also derive from market prices, I can

observe them in high frequency and measure the average effect of monetary surprises. They

mostly associate with movements in the slope of the term structure. A 0.1% surprise in the

policy rate causes the slope factor to increase by 7.2% of one standard deviation. (Short-term

forward rates increase relative to long-term ones.)

The signs of the shock on each of the three factors point to a decline in risk premia, regardless

of weighting matrix specification. Term premia falls in the quarter of the policy announcement.
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Therefore, the negative inclination of the term structure overstates agents’ expectations of

how fast the effect of the monetary shock on interest will fade. And this is where moment

weighting in the GMM estimation matters. The model estimated by OLS says that the effect

of the monetary shock on interest rates fades slowly over time, akin to a persistent AR(1).

On the other hand, the specification that puts all weight on risk-premia moments and the

"intermediary" one agree that the positive effect of the monetary shock on interest lasts ten

quarters.

Taken together, the results I present for the Brazilian bond market reinforce the importance

of carefully considering the choice/weighting of different empirical information to estimate

term structure models.

2. The Affine Model of the Term Structure

2.1. Notation

One period corresponds to a quarter. The notation is the following: pn
t is the log-price of a

zero-coupon bond that pays one unit of currency after n quarters; f n
t = pn−1

t − pn
t is the log

forward rate; it = f 1
t is the one-period interest rate; and

rxn
t,t+m = pn−m

t+m − pn
t −

[
it + f 2

t + · · ·+ f m
t

]
= pn−m

t+m − pn
t + pm

t

is the return on the holding of an n-maturity bond for m quarters, in excess of the interest

charged on an m-period risk-free borrowing −pm
t = it + f 2

t + · · ·+ f m
t . When m = 1 we get

the one-period excess return rxn
t,t+1 = pn−1

t+1 − pn
t − it. There is one risk premium Etrxn

t,t+m to

each pair of bond maturity n and investment horizon m. I use the expressions "risk premium"

and "expected excess return" interchangeably.
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2.2. Forward Rate Decomposition

By no arbitrage, the n-maturity forward rate f n
t is the interest rate at which one can lock, in

period t, a borrowing that starts in t + n− 1, with re-payment due in t + n. As such, there

should be a connection between f n
t and the interest rate expected to prevail in t + n − 1,

Etit+n−1. It is possible to show that

f n
t =

n−2

∑
j=0

[
Etrxn−j

t+j,t+j+1 − Etrxn−j−1
t+j,t+j+1

]
︸ ︷︷ ︸

Term Premium tpn
t

+Etit+n−1. (1)

Equation (1) decomposes the forward rate between an expected interest component and a

term premium component that depends on a combination of expected excess returns.1

The objective of this paper is to measure decomposition (1) using information from the

cross-section of yields, interest rate dynamics and risk premia. (In theory, either a model of

expected interest or a model of risk premia suffice to measure the decomposition, as they

provide one of the terms on the right-hand side of (1) - we can infer the other.)

2.3. The Affine Model: Main Equations

Following Ang and Piazzesi (2003) and Ang et al. (2007), I use a discrete-time version of the

Gaussian exponential-affine model presented by Duffie and Kan (1996). This section presents

the main equations necessary to understand the mechanics of the affine model. I defer to the

appendix a more detailed description.

The state is a P-sized vector process Xt that evolves according to the law of motion

Xt = µ + ΦXt−1 + et+1 et+1 ∼ N(0, Σ). (2)

1The decomposition holds in expected value and for any path of bond prices (i.e., without expected values).
The identity follows from the fact that the forward rate is the difference between the price of bonds that
eventually pay the same one unit of currency. Cochrane and Piazzesi (2009) provide pretty art illustrating it.
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The conditional distribution of Xt in (2) is the "physical" distribution because it generates

actual data. I call Xt,p the p-th element of Xt, and the same for et,p and other vectors in the

model.

The Gaussian model imposes the absence of arbitrage and the log stochastic discount rate

mt+1 = −
[
δ0 + δ′1Xt

]
− 1

2
λ′tΣλt − λ′tet+1. (3)

Vector λt = λ0 + λ1Xt is linear on the factors and captures the sensitivity of mt+1 to each of

the P reduced-form shocks et+1. Discount rate (3) implies that the interest rate is

it = δ0 + δ′1Xt. (4)

Bond prices are also an affine function of the state:

pn
t = An + B′nXt. (5)

Coefficient An and P-sized vector Bn solve well-known Riccati equations outlined in the

appendix. These Riccati equations constitute the main restrictions imposed by no-arbitrage

on the cross-section of yields. In their absence, we could estimate An and Bn by standard

OLS. To derive (5), we use the main pricing condition of the model:

Etrxn
t,t+1 = υn + covt(rxn

t,t+1, e′t+1) λt = υn + B′n−1Σ λt (6)

where υn is a small Jensen inequality constant.1 You can read (6) as a beta model. The risk

premium on a one-quarter holding of a given bond equals the product of the conditional

covariances between its return and the shocks (the quantity of risk) and the discount rate

sensitivity to these shocks λt (the price of risk). If the conditional covariance of the excess return

with shock et,p is 1% larger, investors demand λt,p% higher risk premium to hold the bond.

1I define υn = − 1
2 B′n−1ΣBn−1.
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Given the format of solution (5), coefficient Bn−1 determines this conditional covariance,

which is constant over time. Thus, all variation in risk premia follows from variation in the

price of risk λt.

Critically for our estimation strategy, (6) also implies that we can price bonds using a

"risk-neutral" distribution of Xt, different from the "physical" distribution generating the data.

Under this risk-neutral distribution, Xt follows

Xt = µ∗ + Φ∗Xt−1 + et+1 et+1 ∼ N(0, Σ),

µ∗ = µ− Σ λ0,

Φ∗ = Φ− Σ λ1.

(7)

The pair (µ∗, Φ∗) determines the drift of Xt under this new measure. For a fixed (µ∗, Φ∗),

coefficients An and Bn do not depend on (µ, Φ) or (λ0, λ1). Thus, to price bonds all we need

is the risk-neutral distribution. We do not need to know the physical distribution (2) or the

market price of risk λt governing risk premia (6).

Finally, the appendix shows that

f n
t = υn + E∗t it+n−1 = constant + δ′1Φ∗n−1Xt, (8)

for all n, where expectation E∗t integrates using (7). In words, if agents expect Xt to evolve

according to (µ∗, Φ∗) instead of (µ, Φ), there is no term premium (except for the small υn),

and forward rates reflect expected short-term interest. Hence the "risk neutral" designation.1

In all, we can summarize the affine model as follows:

· (µ, Φ) govern the dynamics of Xt through (2);

· (µ∗, Φ∗) govern the cross-section of yields through (8);

1We build the risk-neutral measure as a measure under which prices would be observationally equivalent if
risk was not priced (λt = 0). By the pricing condition (6), that requires E∗t rxn

t,t+1 = υn, an equation that yields
the terms µ∗ and Φ∗ defined in (7) as well as equation (8).
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· (λ0, λ1) govern risk premia through (6).

By (7), the affine model allows us to fix two of these pairs of parameters, but not the third.

This restriction leads to a trade-off during estimation. We need to carefully consider which

aspects of the data we want to reproduce more closely. The GMM framework brings this

trade-off to light through the imposition of overidentifying moment conditions which we can

weight differently during estimation.

3. Yields and Risk Premia in Brazil

3.1. Data

The Brazilian Financial and Capital Markets Association (ANBIMA) collects market price data

of nominal bonds issued by the Brazilian federal government. At any point in time, available

bonds have different maturities that do not coincide with a complete array of uniformly

spaced quarters, hence some interpolation is necessary. An interpolation similar to that of

the most commonly used Fama and Bliss (1987) dataset is not available. Instead, ANBIMA

provides an estimate of the term structure of interest rates through a daily series of estimated

load and decay parameters of a fitted Svenson (1994) model. It estimates these parameters to

approximate the discount applied to the most liquid trading bonds.1 The closest analogue to

this interpolation approach for the US is studied by Gürkaynak et al. (2007).

The Svenson (1994) model contains a total of six parameters, and provides a lot of flexibility.

But how far is it from actual price data? Not much. I measure the distance between ANBIMA

yields and actual market price yields of available zero-coupon bonds, and find a root mean

squared error (RMSE) of 0.044% in the annualized yield to maturities.2 In comparison, linear

regressions of forward rates on their first three principal components, which explain over

1ANBIMA provides market prices of different traded bonds, but not liquidity data, therefore replication of
the models’ parameters is not feasible.

2The RMSE of an error series {εt} is defined as
[

T−1 ∑T
t=1 ε2

t

]1/2
. "Annualized" means I multiply RMSE by

four (since yields are in quarterly units).
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Notes. I multiply forward rates by four to annualize them.

Figure 1: Quarterly Forward Rates f n
t (Data)

99% of the quadratic variation of yields, result in an average RMSE of 0.19%. The appendix

provides additional details.

I use ANBIMA data to build monthly observations of the prices of bonds with maturities

n = 1, 2, . . . , 40 quarters. Price data then leads to a full term structure of forward rates (figure

1) and excess returns (figure 3). It covers the period 2009-M1 to 2023-M9. Each data point

corresponds to the last trading day of the corresponding month.

3.2. Factors

The vector of factors Xt contains the first three principal components of the term structure

of forward rates.1 Like in the US case, these three factors capture the bulk (> 99%) of cross-

section variation of Brazilian forward rates (Litterman and Scheinkman (1991), Knez et al.

(1994), Dai and Singleton (2000)) and therefore stands as a natural candidate for model factors.

1The principal component decomposition amounts to the spectral decomposition of the sample covariance
matrix of f n

t . Letting λi be the i-th eigenvalue, the share of variance attributable to the first principal component
is λ1/ ∑i λi.
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(a) Level (b) Slope (c) Curve

Notes. Each plot shows the average term structure of forward rates in the data (orange) and the effect
of a one standard deviation change in the level/slope/curve principal component (blue).

Figure 2: Term Structure of Forward Rates: Effect of Change in Principal Components

As usual, they describe the level, slope and curvature of the term structure of forward rates.

Xt =


Levelt

Slopet

Curvet

 (normalized to mean = 0, standard deviation = 1%).

I choose signs so that the interest rate is increasing in all three factors. Figure 2 depicts the

effects of a one standard deviation change in each factor on the average term structure. When

Levelt is large, all yields are high. When Slopet is large, short-term yields are high relative

to long-term yields. When Curvet is large, short and long-term yields are high relative to

mid-term yields.

By construction, principal components have zero sample covariance with each other. I

also normalize each factor to have a sample mean of zero and a standard deviation of 1% (for

comparison, the quarterly interest rate has a standard deviation of 0.8%). The appendix plots

Xt and forward rates’ loadings on it.
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(a) 1-quarter holdings (m = 1) (b) 2-year holdings (m = 8)

Notes. Each curve corresponds to the excess return on a bond of a given maturity n ∈ (12, 20, 40).

Figure 3: Excess Returns rxn
t,t+m (Data)

3.3. Return Predictability

One central tenet of modern empirical finance is that returns are, to some extent, predictable

(Fama and French (1988), Cochrane (2008), Golez and Koudijs (2018), and many others). Fixed-

income markets are no exception (Fama (1984), Cochrane and Piazzesi (2005), Andreasen et al.

(2021)), and, as I show below, neither is Brazil. In the affine model, the market price of risk λt

governs risk premia, which means we can use the available evidence on return predictability

to estimate it. In turn λt ties together the physical and risk-neutral distributions of model

factors Xt.

In this section, I study predictability in the Brazilian bond market by running return-

forecasting regressions of the format

rxn
t,t+m = a(n)m + b(n)m · Xt + εn

t,t+m. (9)

The empirical patterns that emerge guide the selection of moment conditions we target in

the GMM estimation of the affine model, and deeply affect results and their interpretation. I

analyze these patterns separately.
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Empirical Pattern 1: The level, slope and curve factors forecast returns. Predictability starts

at R2 = 11%, and grows with investment horizon m up to 54%.

The top panel of table 1 reports OLS estimates of (9). The terms in parentheses denote

p-values for the test b(n)m,x = 0. (b(n)m,x is the element of b(n)m corresponding to factor x.) I compute

standard errors using the Newey-West estimator with 24 lags (two years). The table reports

results for four investment horizons: one quarter, and one through three years (m = 1, 4, 8, 12);

and three bond maturities: three, five and seven years (n = 12, 20, 28). Results for other

maturities are qualitatively very similar. Panels 3a and 3b plot excess returns in the cases of

one quarter and two year investment horizons.

The regressions lead to R2s that grow with horizon m, starting at 11% for the quarterly

return and reaching 54% in the three-year horizon. Increasing predictability in investment

horizons is a well-known pattern in the empirical finance literature (see Baker et al. (2003)),

often associated to high-frequency noise that averages out over time (which is visible if we

compare the two panels in figure 3).1 For comparison, Cochrane and Piazzesi (2005) find R2’s

in the range of 30 to 40% in the case of US annual returns. A Wald test of joint significance

b(n)m = 0 (unreported) rejects the null of a spurious model at 1% significance when m > 1

and 4% significance when m = 1. Looking at point estimates, returns are higher when

the term structure displays a high level, steepness or curvature.2 The estimated loadings

are economically significant in most cases. For example: a one standard deviation increase

in the level factor raises returns on the five-year bond (n = 20) by 1.5 to 9%, depending

on the investment horizon. For the slope and curve factors, the impact reaches 3 and 4%,

respectively. These results reflect the elevated degree of predictability spanned by the three

principal component factors Xt.

1Many studies emphasize that growing R2 is not due to growing predictability per se (Kirby (1997), Boudoukh
et al. (2008), Farmer et al. (2023)). Instead, it is the expected outcome of having a persistent predictive variable
such as our factors Xt or forward rates themselves.

2Recall that the Slopet factor is increasing in short-term interest and decreasing in steepness. The estimated
negative loadings on Slopet are therefore consistent with the classical Fama and Bliss (1987) finding that, in the
US, a positive inclination of the term structure forecasts higher returns.
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Model: rxn
t,t+m = a(n)m + b(n)m · Xt + εn

m,t

Levelt Slopet Curvet R2(%) χ2
Level R2

f (%)

Investment Horizon: m = 1 (one quarter)

n = 12
0.44 (0.21) 3

22
0.44 (0.23) -0.72 (0.01) 0.31 (0.08) 11 (0.01)

n = 20
0.96 (0.08) 4

27
0.97 (0.10) -1.52 (0.00) 0.75 (0.02) 17 (0.00)

n = 28
1.49 (0.04) 5

28
1.49 (0.06) -2.26 (0.00) 1.28 (0.01) 20 (0.00)

Investment Horizon: m = 4 (one year)

n = 12
1.67 (0.06) 12

33
1.74 (0.05) -0.37 (0.65) 1.35 (0.02) 19 (0.05)

n = 20
3.55 (0.01) 17

44
3.68 (0.01) -1.76 (0.19) 2.69 (0.00) 30 (0.01)

n = 28
5.51 (0.00) 20

49
5.70 (0.00) -3.14 (0.08) 4.08 (0.00) 37 (0.00)

Investment Horizon: m = 8 (two years)

n = 12
2.43 (0.00) 40

52
2.53 (0.00) -0.08 (0.89) 0.94 (0.10) 43 (0.16)

n = 20
5.59 (0.00) 38

52
5.75 (0.00) -0.78 (0.57) 1.92 (0.16) 42 (0.31)

n = 28
8.33 (0.00) 39

53
8.54 (0.00) -1.43 (0.48) 2.68 (0.17) 43 (0.31)

Investment Horizon: m = 12 (three years)

n = 20
5.01 (0.00) 47

55
5.28 (0.00) -0.05 (0.96) 1.58 (0.05) 50 (0.01)

n = 28
8.75 (0.00) 50

59
9.21 (0.00) -0.56 (0.73) 3.05 (0.04) 54 (0.00)

Notes. Monthly data. The dependent variable is the excess return rxn
t,t+m, where t is in quarter units, n

is the bond maturity, and m is the investment horizon. p-values in parentheses. Standard errors
computed using Newey and West (1987) estimator with 24 lags. The χ2

Level column reports the p-value

of the Wald test of b(n)m,Slope = b(n)m,Curve = 0, that is, a specification that involves only the level factor on
the right-hand side. The R2

f column reports the R2 from a regression with the forward rates of
maturities n = 4, 8, 12 quarters on the right-hand side (instead of Xt).

Table 1: Return-Forecasting Regressions
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Can we improve our forecasts by using additional information from the term structure?

Column R2
f of table 1 reports the R2 of an alternative regression model

rxn
t,t+m = α + β · Ft + εt,t+m, (10)

where vector Ft groups forward rates of maturities one, two and three years (n = 4, 8, 12; I

try other combinations, and this one often leads to the best fit).1 The table shows that we do

gain some forecasting power, although these gains more or less decline as the investment

horizon increases. In the three-year horizon regressions, the R2 does not improve by more

than 5%. In the two-year horizon, it increases by about 10%, but the additional predictability

derives mostly from the high returns realized at the onset of the COVID pandemic, when the

Brazilian central bank begins to cut interest rates. Figure 4, which plots fitted values from

each model, illustrates that point. These interest cuts were hardly forecastable two years prior

to COVID, hinting at some degree of model overfit in the case of regression (10). Overall, I do

not find the gains in predictability sufficiently strong to justify adding more variables to the

state vector Xt, particularly if we focus on investment horizons of two years or longer.

Empirical Pattern 2: As the investment horizon m grows, the Levelt factor accounts for an

increasing share (up to 92%) of the variance of risk premia spanned by Xt.

Empirical pattern 2 is the main evidence on Brazilian bond risk premia I present in this

paper, and the key risk premium condition I explore to estimate the affine model.

Results from the OLS regression (9) underscore the increasing return-predicting power

of the level factor as investment horizon m grows. First, coefficients b(n)m,Level become more

economically significant. With quarterly returns, b(n)m,Level is about as large as the other two

loadings; in the two-year horizon case, it is more than twice as large. Second, estimates of

b(n)m,Level become more statistically significant. With n = 20, for example, the p-value declines

1Including more forward rates renders estimates too volatile due to multicollinearity, so I stop at three
regressors. In any case, including more variables on the right-hand side does not increase R2 too much.
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Notes. Blue: realized excess return data (rx20
t,t+8). Orange: model (12), fit projected by Levelt. Green,

dash: model (9), fit projected by Xt. Red, dot: model (10), fit projected by Ft.

Figure 4: Return predictability (rx20
t,t+8) under different models

from 0.10 using quarterly returns, to zero in the regressions with two and three-year returns.

It is also zero for other maturities n. On the other hand, point estimates of the loadings on

Slopet and Curvet become less precisely estimated, and more indistinguishable from zero,

particularly in the two-year horizon regressions, m = 8. In this latter case, a Wald test of

the joint hypothesis b(n)m,Slope = b(n)m,Curve = 0 fails to reject the null (p-values in table 1’s χ2
Level

column).

In addition, the level factor accounts for increasing shares of the variance of risk premia

Etrxn
t,t+m spanned by Xt. This conclusion follows from the increasing loadings of excess

returns on Levelt compared to the other two factors. Since the three regressors are orthogonal

by construction and have the same (1%)2 variance, coefficients b(n)m pin down the variance

decomposition:

var
(
Etrxn

t,t+m
)
=
[
b(n)2m,Level + b(n)2m,Slope + b(n)2m,Curve

]
× (1%)2. (11)

In the quarterly return regression m = 1, the share of variance accounted for by b(n)2m,Level is
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24-25%: most predictability comes from Slopet and Curvet. But it grows to 88-89% in the

regression with two-year returns and 90-92% in the three-year case. Almost all predictability

of two and three-year bond returns stems from variation in the level factor.

We can make the point visually. Figure 4 plots, in solid red, the two-year risk premium on

five-year bonds Etrx20
t,t+8 implied by the restricted model

rxn
t,t+m = a(n)m + b(n)m,Level Levelt + εn

t,t+m. (12)

We can hardly visualize any difference between the fitted risk premium spanned by Levelt

(model (12)), and that spanned by Xt (model (9)). Again the most striking difference occurs

at the start of the unpredictable COVID pandemic. Table 1 reports OLS estimates of (12). As

the investment horizon m grows, the R2 produced by the level factor becomes increasingly

close to that produced by the entire state vector Xt. (Since we estimate all equations by OLS,

the ratio of R2 in model (12) to that in the model (9) also represents the share of risk premium

variance attributable to Levelt.)

In conclusion: among Xt, the level factor is the key driver of long-term risk premia. We

want the affine model to replicate this pattern. How it affects the other aspects of the model

and hence decomposition (1) is the next topic.

4. GMM Estimation

Our job is to estimate the parameters of the affine model. They relate to: physical dynamics

(µ, Φ), risk-neutral dynamics (µ∗, Φ∗), price of risk (λ0, λ1), interest rate (δ0, δ1) and shock

covariance (Σ). I use the hat notation to differentiate parameter estimates from their true

values.

I start by forming an estimate Σ̂ of Σ by running OLS on (2) and using the resulting fitted
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errors êOLS
t :

Σ̂ =
1
T

T

∑
t=1

êOLS
t êOLS′

t .

Using a first-stage estimate of Σ is common in the affine model literature. Re-computing it

using the final estimates (µ̂, Φ̂) makes little difference.

I also estimate interest parameters (δ̂0, δ̂1) by running OLS on (4). Table 2 reports results.

Another possibility would be to estimate (δ0, δ1) jointly with the remaining parameters,

targeting the entire term structure { f n
t } instead of it = f 1

t only. However, mean squared

errors of the interest rate equation (4) are the largest across maturities n, even if we estimate

(δ0, δ1) to minimize it (the appendix shows a plot of average errors by maturity).1

Fixing (Σ̂, δ̂0, δ̂1), we focus on the remaining parameters (µ, Φ), (µ∗, Φ∗), and (λ0, λ1),

which respectively govern the dynamics of Xt (hence expected interest Etit+j), model pricing

and risk premia. The affine model constrains these parameters through (7), so we are not

free to optimize all aspects of the model. I apply a two-step GMM procedure that highlights

which of these aspects we prioritize.

Both steps of the estimation procedure solve standard GMM problems. For a generic

moment condition E[ht(θ)] = 0, where ht is a function of parameter vector θ and the data,

they involve minimizing the objective function

Minθ g′θ W gθ (13)

where gθ = T−1 ∑T
t=1 ht(θ) is the sample counterpart of the moment condition and W is a

positive definite weighting matrix.2 In both steps of the estimation, I use numerical search

algorithms to solve (13).

1The R2 for the interest rate regression is 97.7%.
2See Hamilton (1994) for a textbook treatment of GMM estimators.
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4.1. First Step: Term Structure Pricing

We want the Gaussian model to price the term structure of forward rates as well as possible,

for two reasons. First, we are ultimately interested in the forward rate decomposition

(1); and since the decomposition only holds using model-implied forward rates f̂ n
t , the

exercise becomes pointless if they are too different from observed rates. Second, as Cochrane

and Piazzesi (2009) point out, in any period t the cross-section of forward rates { f n
t }N

n=1

allows us to very precisely estimate risk-neutral dynamics (µ∗, Φ∗) governing factors’ drift

{E∗t Xt+n}N
n=1, through equation (8): f n

t = υn + δ0 + δ′1E∗t Xt+n−1. Estimation of the physical

dynamics (µ, Φ), on the other hand, is subject to substantial model and statistical uncertainty,

as I discuss below.

The solution to bond prices (5) implies an also affine solution to forward rates f n
t =

A f
n + B f ′

n Xt.1 By equation (8) (see last paragraph), given (Σ̂, δ̂0, δ̂1), A f
n and B f

n depend only on

(µ∗, Φ∗). Hence, the first step of the estimation chooses (µ∗, Φ∗) to minimize pricing errors.

In the GMM formulation (13), it matches the moment condition below.

Moment Condition 1 (Pricing Errors):

E
[
ε2

n,t

]
= 0 where εn,t = f n

t −
(

A f
n + B f ′

n Xt

)
. (M1)

In the affine model, pricing errors are identically zero ε2
n,t = 0, so moment M1 holds

trivially. By targeting M1, the GMM algorithm minimizes squared pricing errors, like OLS. I

include the ten maturities n = 2, 6, 10, . . . , 38.2 The weighting matrix is the identity W = I.

Despite having more free parameters than moment conditions, we cannot perfectly match

any moment, since A f
n and B f

n are nonlinear functions of (µ∗, Φ∗). Still, the affine model

produces small pricing errors. The RMSE is 0.202% (annualized), not much larger than the

1Parameters A f
n and B f

n satisfy A f
n = An−1 − An and B f

n = Bn−1 − Bn. Their initial conditions are A f
1 = δ0

and B f
1 = δ1. See the appendix.

2Throwing away some yield data reduces parameter variance due to the large correlation between forward
rates. Using the whole sample leads to near identical point estimates.
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0.185% resulting from unrestricted OLS (which produces the smallest RMSE by construction).

The appendix plots them.

Table 2 summarizes the results from the GMM estimation (terms in parentheses are

standard deviations, see table notes). The top, left panel shows the estimated risk-neutral

autoregressive matrix Φ̂∗ and the absolute value of its eigenvalues. The largest one is 0.997,

pointing at near unit-root behavior. The first row of Φ̂∗ shows that this unit root stems

from the level factor law of motion, which approximates an AR(1) (the loadings of Levelt

on Slopet−1 and Curvet−1 are -0.03 and -0.01), with an autocorrelation of 0.98. The appendix

plots the impulse-response functions (IRF) of the risk-neutral distribution to each shock and

makes this point visually.

It is well known in the bond pricing literature that risk-neutral dynamics must be highly

persistent. This is an implication of the fact that the first principal component of the term

structure (the level factor) accounts for most variation of forward rates.1 The affine model

can only replicate that pattern if most innovations that raise interest rates increase long-term

yields as well. In turn, risk-neutral pricing equation (8) ( f n
t = constant + δ′1Φ∗n−1Xt) says

that long-term rates can only increase if Φ∗n−1 does not converge too fast, which is why it

needs to have a root close to one.

4.2. Second Step: Physical Distribution and Risk Premia

The second step involves estimating the physical distribution (µ, Φ) and price-of-risk param-

eters (λ0, λ1). Given (µ̂∗, Φ̂∗), the building of the risk-neutral distribution (7) implies we can

only choose one of them. I start by assuming that factors’ sample averages (zero by construc-

tion) coincide with their unconditional averages in the model, thus µ̂ = 0. Equation (7) then

gives λ̂0 = −Σ̂−1µ̂∗. You can regard this simplification as the limit case of an intermediary

GMM step targeting both the sample averages of Xt and sample averages of expected returns.

Estimation of Φ and λ1 follows from a second GMM problem, which attempts to match

1In our dataset, it accounts for over 90% of forward rates’ quadratic variation.
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Level Slope Curve |Eig| Level Slope Curve

Risk-Neutral Dynamics Φ∗ δ1

Level 0.98 -0.03 -0.01 0.82 0.68
(0.01) (0.01) (0.01) (0.00)

Slope -0.01 0.86 -0.16 0.82 0.40
(0.06) (0.07) (0.03) (0.00)

Curve 0.22 0.14 0.77 0.997 0.15
(0.05) (0.03) (0.13) (0.00)

Physical Dynamics Φ (w = 0.01) Σλ1 = Φ̂− Φ̂∗

Level 0.85 0.07 -0.09 0.68 -0.13 0.10 -0.07
(0.15) (0.11) (0.16) (0.16) (0.10) (0.16)

Slope 0.11 0.77 -0.28 0.88 0.12 -0.09 -0.12
(0.07) (0.05) (0.07) (0.07) (0.04) (0.07)

Curve 0.31 0.08 0.77 0.88 0.09 -0.06 -0.01
(0.12) (0.10) (0.18) (0.11) (0.11) (0.14)

Physical Dynamics Φ (w = 0.5) Σλ1 = Φ̂− Φ̂∗

Level 0.84 0.13 -0.24 0.46 -0.14 0.17 -0.22
(0.07) (0.10) (0.07) (0.07) (0.07) (0.06)

Slope 0.19 0.56 0.05 0.82 0.20 -0.30 0.21
(0.07) (0.07) (0.09) (0.07) (0.07) (0.09)

Curve 0.21 0.14 0.67 0.83 -0.01 0.00 -0.11
(0.09) (0.11) (0.16) (0.07) (0.12) (0.10)

Physical Dynamics Φ (w = 1, OLS) Σλ1 = Φ̂− Φ̂∗

Level 0.87 0.15 -0.14 0.43 -0.11 0.18 -0.12
(0.06) (0.09) (0.06) (0.07) (0.06) (0.04)

Slope 0.19 0.57 0.08 0.78 0.20 -0.29 0.24
(0.07) (0.07) (0.08) (0.07) (0.07) (0.08)

Curve 0.16 0.17 0.61 0.83 -0.06 0.03 -0.17
(0.11) (0.08) (0.15) (0.10) (0.08) (0.09)

Notes. Column |Eig| reports the absolute values of the eigenvalues of each autoregressive matrix.
GMM asymptotic standard errors in parenthesis (spectral density matrix estimated using Newey and

West (1987) estimator with 24 lags). I use the delta method to compute the the variance of Φ.

Table 2: Affine Model Parameters: GMM Estimation Results
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two sets of orthogonality conditions that the et shocks in the affine model satisfy.

4.2.1. Matching OLS Moments

One way of estimating Φ is to simply run OLS on (2). We can then reverse-engineer λ1 =

Σ−1(Φ−Φ∗).1 This is the approach adopted by Adrian et al. (2013). By construction, OLS

sets the P2 parameters in Φ to match the P2 orthogonality conditions below.

Moment Condition 2 (OLS):

E
[
etX′t−1

]
= 0. (M2)

Moment M2 holds in the affine model from the assumption that et is an i.i.d. exogenous

random process. We should not be able to forecast it using Xt. M2 asks that we select Φ in

such a way that the resulting sample shock series satisfies this property.

However convenient, OLS estimation presents two caveats. First, OLS does not target

empirical patterns related to risk premium. For instance, nothing guarantees that the level

factor will be the main driver of long-term premia, as empirical pattern 2 calls for. By matching

M2 alone, we leave on the table potentially valuable information to discipline parameter

selection. Moreover, we give up the model’s ability to reproduce these risk-premium patterns.

One might be interested in the correct specification of the risk premium by itself, but, more

importantly, realistic risk premium dynamics are critical in the exercise of decomposition

yields since the term premium is just a sum of expected returns (see (1)).

The second issue is that OLS estimates are highly sensitive to model specification, as

Cochrane and Piazzesi (2009) demonstrate. Estimating a version of (2) in difference, for

instance, leads to wildly different conditional forecasts of X, and therefore different estimates

of the term premium. More deeply, in the case of near unit root processes, OLS estimates

lead to a downward bias on the system’s persistence (Yamamoto and Kunitomo (1984)). This

is particularly problematic in our context because we know the risk-neutral dynamics Φ∗

1In that sense, the first-stage estimate of the risk-neutral dynamics imposes no restrictions on the conditional
drift of Xt (Joslin et al. (2011) formalize this point).
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must have a near-unitary root - thus the physical distribution having a similar property is a

plausible possibility.1

4.2.2. Matching Risk Premia Moments

Another approach to complete the estimation of the affine model is to focus on risk premia.

For instance, Cochrane and Piazzesi (2009) estimate λ1 to approximate their return-forecasting

regression on one-period returns, and then compute Φ = Φ∗ + Σλ1. (λ1 is directly connected

to one-period returns through (6).) In our case, empirical findings 1 and 2 relate to returns

over longer investment horizons, so the connection with λ1 gets blurred. But the principle of

using information about risk premia to infer physical Φ from risk-neutral Φ∗ continues to

apply. All we need is the appropriate moment condition.

Moment Condition 3 (Risk Premium):

E
[
εn

t,t+mX′t−1
]
= 0. where εn

t,t+m = rxn
t,t+m − Etrxn

t,t+m (M3)

For a given pair (m, n), M3 contains P moment conditions. In the context of return-

forecasting regressions (9), M3 defines OLS estimates. In the context of the affine model, M3

represents an orthogonality condition that, again, holds because et+m is independent from

Xt−1. To see this, write down the expression for excess returns:

rxn
t,t+m = pn−m

t+m − pn
t + pm

t

= constant +
[
B′n−mΦm − B′n + B′m

]
Xt +

m−1

∑
j=0

Φjet+m−j︸ ︷︷ ︸
εn

t,t+m

. (14)

The sum of shocks on the right-hand side corresponds to the return-forecasting error εn
t,t+m.

Moment M3 therefore asks that we choose Φm such that this combination of sample shocks is

1Indeed, several bias-correction methods have been proposed to address this issue. See Phillips and Yu
(2005), Tang and Chen (2009) and Bauer et al. (2012).
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uncorrelated with Xt−1.

We need to choose m and n. I focus on replicating the properties of risk premia on a

two-year investment horizon, m = 8. In the two-year case, return-forecasting regressions

combine an elevated degree of predictability (pattern 1) with an nice pattern of risk premium

driven mainly by the level of the term structure (pattern 2).1 With m > 1, a key difference

between M2 and M3 is that they constrain the drift of X over different time horizons. Moment

M2 cares about Φ, the drift in one quarter; M3 cares about Φ8, the drift in two years. It should

now be clear how long-term return predictability can provide critical information for the

dynamics of the term structure.

I target the return on bonds with maturities n = 12, 20, 28. These are the bond returns we

saw in table 1. Selecting three bond maturities means M3 gives us 9 = P2 moment conditions,

the same as M2.

Lastly, why bother with risk premia over two-year investment horizons when we saw that

the term premium is a sum of one-quarter expected returns? The appendix shows that we can

write long-term risk premia as a combination of one-period premia:

Etrxn
t,t+m =

m−1

∑
j=0

Etrxn−j
t+j,t+1+j −

m−1

∑
j=0

Etrxm−j
t+j,t+1+j (15)

(The first sum groups the excess returns of re-investing the n-period bond over the next m

periods. The second sum groups the difference between the cost of financing in period t and

the expected cost of re-financing period-by-period at the prevailing interest rate.2) The point:

moment M3 does convey information about short-term risk premia. Critically, it conveys

information about risk premia beyond the next period t + 1, as (15) contains returns realizing

up to t + m. This is valuable information to us: the term premium component of the forward

rate decomposition (1) also depends on the expectation of one-period returns on horizons

1The empirical patterns also justify targeting the three-year horizon, but that would yield little predictabil-
ity/interpretation gains at the high cost of losing twelve observations from a 169-data-point sample.

2The second sum is a really a sum of term premium terms - the difference between current forward rates
and expected future interest.
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longer than one quarter.

4.2.3. Moment Weighting and Matching

I compute λ̂1 as the solution to a second GMM estimation that targets OLS moments M2 and

risk-premium moments M3. We therefore search for P2 = 9 parameters to match 2P2 = 18

moment conditions. To write moments in comparable standard deviation units, I divide the

sample counterpart of M2 by 1%× 0.5% and that of M3 by 1%× 5%. These constants are

close to the standard deviations of the underlying terms in each targeted moment. With λ̂1

estimated, I compute physical distribution parameter Φ̂ = Φ̂∗ + Σ̂λ̂1, which completes the

estimation of the affine model.

Given the presence of overidentifying restrictions, the choice of the weighting matrix

W is critical. One possibility is to use the asymptotically efficient inverse of the spectral

density matrix. Nevertheless, the whole point of using GMM for us is to bring to the center

stage a prominent trade-off imposed by the affine structure: it can reproduce OLS (M2) or it

can reproduce return forecasting regressions (M3); it cannot reproduce both. The efficient

weighting matrix throws this trade-off under the carpet and simply asks that we pay more

attention to combinations of individual moments - regardless to which group M2 or M3 they

belong - with the lowest variance. Therefore, while it can be an appropriate choice in other

contexts, the efficient weighting matrix defeats one of the purposes of this paper.

So consider instead the following diagonal weighting matrix:

Ww =
1

18

 wI9 0

0 (1− w)I9

 ,

where I9 is the 9× 9 identity and w ∈ [0, 1]. Weighting matrix Ww attributes a combined

weight of w to OLS moments M2, and 1− w to risk-premium moments M3. Figure 5 plots

the resulting minimized moments, in absolute value, for three different choices of w (in

the language of the general GMM formulation (13), it plots |gθ̂|). Higher bars mean larger
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(a) w = 1 (OLS) (b) w = 0.5 (c) w = 0.01

Notes. All moments in standard deviation units. Blue bars represent OLS moments (M2); orange bars
represent risk premia moments (M3). The weighting matrix gives a combined weight of w to the

former, 1− w to the latter.

Figure 5: Second-Step GMM: Estimated Moment Errors (Absolute Value)

moment errors. The blue bars correspond to OLS moments M2, the orange bars correspond

to the return-forecasting moments M3.

Key Point 1: Under OLS-implied physical dynamics, the share of risk premia variance

accounted for by the level factor is substantially lower (as much as half) than what is implied

by return-forecasting regressions.

When w = 1 (panel 5a), Φ̂ coincides with the OLS estimates of the law of motion (2).

Shocks et are orthogonal to Xt−1, and the affine model matches M2 with zero error. However,

the model misses risk premium moments M3 by as much as 70% of a standard deviation.

Missing M3 means it does not explain observed returns as well. More importantly, it

means that we get different risk premia. Table 3 shows how OLS estimates of the return-

forecasting equation (9) compares to those implied by the affine model. It considers two

investment horizons: m = 8 (two years, which we target) and m = 12 (three years, which we

do not). Bond maturities n are the same as before.

The message of the table is clear: estimating Φ by OLS leads to unrealistic risk premium

behavior. The loadings of long-term expected returns on Levelt are far too small compared

27



to the loadings on the other two factors. Since they capture the variance decomposition of

risk premia (equation (11)), these findings mean that OLS-implied premia violate empirical

pattern 2. In the case m = 8, n = 12, the share of variance attributable to Levelt falls from

88% in the regression to 43% in the OLS-estimated affine model. The amount of predictability

we leave on the table attributable specifically to the level factor is comparatively large. Indeed,

the three outstanding moment error bars in panel 5a refer to the three conditions

E[εn
t,t+8Levelt−1] = 0 n = 12, 20, 28,

showing how one could extract additional information from the level factor to explain

observed excess returns. Put differently, in the world we estimate using w = 1, returns would

not look like what they do. We would not get pretty figure 4, as projecting returns with Levelt

alone would lead to wildly different forecasts than using the whole state Xt.

As we lower w, the return-forecasting errors implied by the affine model get increasingly

more orthogonal to Xt (lower orange bars in figure 5), but implied shocks et get increasingly

less orthogonal (higher blue bars). Taken together, the three panels underscore the trade-off

imposed by the affine structure in terms of empirical objectives. As expected, the case w = 0.5

balances these moment errors. When w = 0.01, we get very close to matching M3, and thus to

reproducing return-forecasting regressions, as table 3 reports.1 (We should not expect to find

exactly the same figures, because the return-forecasting regressions (9) have a free intercept

term, which the GMM solver does not - we have fixed µ.) On the other hand, we get farther

from OLS dynamics, and the RMSE of sample errors grows.

There is no "right" choice of w. There might be statistical reasons to focus on one group of

identifying moments, like OLS’s notorious bias in the presence of unit roots (Cochrane and

Piazzesi (2009)’s point). There might be numerical reasons, like the convenience of OLS as

opposed to non-linear searches (Adrian et al. (2013)’s point). But from a theoretical perspective,

1Setting w = 0 further improves the fitting of M3, but leads to wild short-term dynamics. I therefore focus
on the remainder of the paper on the w = 0.01 case.
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Etrxn
t,t+m = a(n) + b(n) · Xt

Investment Horizon (m): Two Years Three Years

Bond Maturity: n = 12

w Levelt Slopet Curvet Levelt Slopet Curvet

OLS 2.53 -0.08 0.94
Affine Model 0.01 2.27 -0.30 0.56 (rx12

t,t+12 = 0)
Affine Model 0.5 1.67 -0.23 0.39
Affine Model 1 0.60 -1.65 0.22

Bond Maturity: n = 20

w Levelt Slopet Curvet Levelt Slopet Curvet

OLS 5.75 -0.78 1.92 5.28 -0.05 1.58
Affine Model 0.01 5.62 -1.06 1.35 4.23 -0.42 0.13
Affine Model 0.5 4.98 -0.80 1.07 3.57 -0.54 0.18
Affine Model 1 2.60 -1.72 0.85 2.10 -1.05 0.57

Bond Maturity: n = 28

w Levelt Slopet Curvet Levelt Slopet Curvet

OLS 8.54 -1.43 2.68 9.21 -0.56 3.05
Affine Model 0.01 8.35 -1.79 2.11 7.60 -0.96 0.55
Affine Model 0.5 8.15 -1.29 1.77 6.97 -1.02 0.39
Affine Model 1 4.86 -2.55 1.47 4.77 -1.77 1.02

Notes. This table compares the return-forecasting regression (9) estimated by OLS with the estimates
implied by the affine model. Parameter w governs the weight we give to OLS moments M2 in

detriment of risk-premia moments M3.

Table 3: Return-Forecasting Regression: Regression Evidence vs Affine Model

29



both M2 and M3 are residual orthogonality conditions that we equally expect to hold in

"reality". So why do we have to choose? The root of the trade-off that motivates this paper is

model uncertainty. Like any model, the affine framework is a simplification that cannot be

expected to reproduce all features from reality. Figure 5 hides the many other moments we

are not matching. With the "right" model (and a lot of data), we would be able to match both

M2 and M3, and the trade-off would vanish. In that sense, selection of w is not so much a

matter of right or wrong, as it is a matter of research preference and careful consideration of

which aspects of reality we need to capture.

4.3. Estimated Factor Dynamics

We have seen where our estimates come from, we now look at what they tell us. The three

bottom panels of table 2 report the physical distribution’s autoregressive matrix Φ̂ for the

same group of weighting parameters w, which I focus on for the rest of the paper: w = 0.01,

w = 0.5 and w = 1 (OLS). Regardless of which we choose, physical dynamics is largely less

persistent than in the risk-neutral case: the largest eigenvalue of the system drops from 0.997

to the range 0.83-0.88. The level factor no longer resembles an AR(1).

Figures 6, 7 and 8 summarize model dynamics for different choices of w. They contain

IRFs to Levelt, Slopet and Curvet shocks, respectively (e.g., the level shock is [1, 0, 0]). The

top graphs show the responses of model factors Xt.

The graphs in the middle depict the (annualized) forward rate decomposition:

tpn
t = f n

t − Etit+n−1

The thick red line represents the response of interest rate over time it+n. The thin line plots the

reaction of the term structure f n
t=0 in period zero when the shock hits, as a function of maturity

n. The difference between them (filled area) is the term premium tpn
t=0 at period zero as a

function of the bond’s maturity n. Since we use the same risk-neutral distribution (µ̂∗, Φ̂∗),
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the time-zero response of the term structure f n
t=0 is identical across w’s. The choice of w only

affects its decomposition, not the response itself.

The bottom plot depicts the response of the two-year risk premium on the five-year

maturity bond Etrx20
t,t+8 (solid line). For comparison, I also plot the risk premium implied by

the unrestricted return-forecasting regression (9) (dashed).1

Key Point 2: As we estimate physical dynamics Φ giving more weight to risk-premium

moments M3 rather than OLS moments M2 (i.e., as we choose lower w):

1. Interest rate dynamics presents higher-frequency and amplified cycles.

2. The model attributes an increasing portion of level movements in the term structure to

term premia.

The left panel refers to w = 1, the dynamics we get from OLS. Comparison with the panels

to the right shows that, as we ask the model to reproduce risk premium moments, the IRFs

of Xt (top graphs) display higher-frequency and amplified cycles; and interest IRFs (middle

graphs) inherit these properties. "Higher-frequency" means they change direction faster:

with w = 0.01, all nine Xt IRFs switch signs at some point of the twenty-period transition,

compared with two under OLS w = 1. "Amplified" means that the local peaks and bottoms

of the IRFs tend to be larger in absolute value. In all, the responses acquire the look of an

"S"-shape. On the other hand, in the w = 1 OLS case, the path of the variable shocked reminds

us of an AR(1), especially in the Levelt and Slopet shocks.

Higher-frequency and amplified cycles allow the affine model to replicate return-forecasting

regressions. As we pick lower w, the risk premium IRFs (bottom graphs) better approximate

the path implied by the regressions. From the figures, OLS dynamics w = 1 misses the

return-forecasting regression by the largest margin after a level shock (panel 6a), as one

would expect given key point 1. In that case, the risk premium Etrx20
t,t+8 jumps by 2.62 vs 5.75

in the return-forecasting regression. With w = 0.01, however, the level factor and the interest

1The dashed line multiplies the b(n)m estimated from (9) by the IRFs of Xt.
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(a) w = 1 (OLS) (b) w = 0.5 (c) w = 0.01

Notes. One period = one quarter. Top: factors Xt. Middle: interest rate it, forward rate at period zero
f n
t=0, and the term premia tpn

t=0 (both as functions of maturity n). Bottom: risk premium on 2-year
holdings of five-year bonds Etrx20

t,t+8 (also, the risk premium implied by the unrestricted
return-forecasting regression (9)).

Figure 6: Physical Dynamics: IRF to a Level Factor Shock
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(a) w = 1 (OLS) (b) w = 0.5 (c) w = 0.01

Notes. One period = one quarter. Top: factors Xt. Middle: interest rate it, forward rate at period zero
f n
t=0, and the term premia tpn

t=0 (both as functions of maturity n). Bottom: risk premium on 2-year
holdings of five-year bonds Etrx20

t,t+8 (also, the risk premium implied by the unrestricted
return-forecasting regression (9)).

Figure 7: Physical Dynamics: IRF to a Slope Factor Shock
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(a) w = 1 (OLS) (b) w = 0.5 (c) w = 0.01

Notes. One period = one quarter. Top: factors Xt. Middle: interest rate it, forward rate at period zero
f n
t=0, and the term premia tpn

t=0 (both as functions of maturity n). Bottom: risk premium on 2-year
holdings of five-year bonds Etrx20

t,t+8 (also, the risk premium implied by the unrestricted
return-forecasting regression (9)).

Figure 8: Physical Dynamics: IRF to a Curvature Factor Shock
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rate decline faster (higher frequency) and overshoot downward their long-term mean (amplified

cycle). As a result, bond prices recover faster, which justify higher two-year expected returns

in period zero.

Still on the level shock of figure 6, we see a large difference in projected term premia in

period zero (filled area in the middle plot). Since expected interest declines faster in the

w = 0.01 case, a larger portion of the initial jump of the term structure must be accounted for

by term premia. You can also understand the increase in term premia as the result of agents

inferring larger expected returns from the initial jump in the term structure level (equation

(1) shows how the term premium is just the sum of quarterly premia).

The difference in projected term premia by different choices of w is less clear for the

other two shocks of the model. In response to a slope shock, we get very low term premia

regardless of w. In response to a curve shock, we get some but not a lot of term premia with

w = 0.01, and hardly any with OLS w = 1. This difference is reminiscent of the positive

loading of risk premia on the curve factor (see table 3).

Finally, the IRFs present some "continuity" in weighting w: estimated IRFs with w = 0.5

look like an average of the OLS w = 1 and w = 0.01 cases.

5. Forward Rate Decomposition

Figure 9 plots my estimates of the forward rate decomposition (1). Each plot contains the

decomposition implied by the w = 1 OLS estimation of Φ (solid curves), and the w = 0.01

estimation that focuses on risk premium moments M3 (dashed curves). I ignore the w = 0.5

case here to avoid overcrowding the figures (the w = 0.5 series is approximately an average

of the other two anyway).

The top panel decomposes two-year yields f 8
t ; the bottom panel three-year yields f 12

t . The

decomposition of one-year yields (unplotted) attributes most variation to expected interest,

regardless of w. The decomposition of yields with maturities superior to five years attributes
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(a) 2-Year Forward Rates (n = 8)

(b) 3-Year Forward Rates (n = 12)

Notes. Each panel plots the estimates of the forward rate decomposition (1), for maturities n = 8 and
n = 12. I multiply all rates by four to annualize them. Parameter w governs the weight we give to

OLS moments M2 in detriment of risk-premia moments M3.

Figure 9: Forward Rate Decomposition. Solid: w = 1 (OLS), Dashed: w = 0.01
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most variation to term premia. The latter finding contrasts with most decompositions for the

United States (such as Kim and Wright (2005), Cochrane and Piazzesi (2009), Adrian et al.

(2013), Joslin et al. (2014)) which find that a substantial share of variation in ten-year yields is

accounted by changes in expected interest. Part of the explanation for the difference between

results for US and Brazil is that these studies use longer time series of US data, in which the

interest rate presents a lot of low frequency dynamics that are absent with Brazilian data

starting in 2009. As the term structure plot 1 shows, in the period 2009-2023, the interest rate

fluctuates around its averages with cycles of about two years. It is not surprising that our

estimates reflect this average cycle length.

The difference between the decompositions estimated with w = 1 (OLS) and w = 0.01

reflects key point 2 of the previous section. The two term premia series tend to differ more

when the level of the term structure is unusually high or low (you can find the plot of Xt in

the appendix). For example: in 2015/2016, Brazil experiences a financial crisis and the level

of the term structure peaks. The two-year forward rate increases by 4%. The OLS estimate

of Φ suggests that about half of that jump is explained by higher expected interest in 2017,

the other half by the higher risk premia demanded by investors. The estimate of Φ using

w = 0.01 leads to a model that reads considerably more return predictability from the high

level of the term structure in that period. Investors must have been demanding much higher

risk premia. Such higher premium however is only consistent if interest rates were expected

to fall already by 2017, consistent with its IRF in figure 6c. The period 2019/2020 depicts a

similar phenomenon, with an opposite sign.

The figures show how replicating the return-forecasting regressions can involve current

and future expected interest moving in opposite directions at times. The regressions demand

that we incorporate to the expected dynamics of the interest rate the ups and down observed

in its time series. The decomposition of the three-year bond in panel 9b smooths out some of

the noise and make that point clearer.
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6. Decomposition of Monetary Policy Surprises

The IRFs of the physical distribution of Xt have shown that level shocks lead to largely differ-

ent decompositions depending on the weight w we give to OLS moments M2 in detriment of

risk premia moments M3. Curve and slope shocks, not so much. These are reduced-form

disturbances with no structural interpretation of their own. In this section, I ask the more

interesting question of how the choice of w impacts the decomposition of a domestic monetary

policy shock.

I identify a monetary shock applying the high frequency approach that has become

common in the monetary economics literature (for example: Cochrane and Piazzesi (2002),

Hamilton (2008), Gertler and Karadi (2015), Nakamura and Steinsson (2018); Gomes et al.

(2023) use high-frequency identification using Brazilian data). I measure monetary surprises

by comparing the actual change in the overnight Selic rate (the Brazilian equivalent of the

Fed Funds Rate) to the rate change implied by future contract agreements ("DI" futures). DI

future contracts are traded in Brazil with high liquidity and in monthly maturities. I collect

surprise data directly from Bloomberg.

Bloomberg’s surprise series uses the futures’ yield implied by the last traded contract at

the day of the policy announcement. Monetary policy rate announcements by the Brazilian

Central Bank happen after market hours, so market participants are unaware of the policy

rate decision until the following day. The key idea behind high-frequency identification is

that it surpasses the problem of endogeneity (the central bank might react to market yields

just as market yields obviously react to the central bank; hence we cannot build a surprise

series using market prices traded one month prior to the announcement.) The central bank

however does not respond to market price changes that take place on the announcement day

or the next.

Given this procedure, the resulting surprise figures cannot be directly compared to shocks

of a quarterly model, since agents learn valuable economic information from the start of a
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Dependent η p-value R2

Level -0.03 0.76 -6.6
Slope 0.72 0.00 7.6
Curve -0.23 0.58 0.8

Notes. The dependent variables are the changes in model factors ∆Xd following policy
announcements. The explanatory variable is the surprise component of the change in Selic rates. The

regressions have no intercept term.

Table 4: Policy Rate Announcement Regressions

quarter until the day of the announcement. When working with quarterly or monthly VARs,

it is then common practice to add up the individual shocks in a given quarter. Our VAR,

however, is formed by combinations of market-price yields. As such, we can observe them

daily and directly measure them in "high frequency".1

Given an announcement date d, let sd be the corresponding surprise, that is, the actual

change in the Selic rate minus the change implied by DI future market. The average annual-

ized absolute surprise is 0.0585%. I collect data on the term structure of forward rates at the

day of the announcement, at the end of the following business day, and then compute the

same principal component transformation used to build the original sample Xt. This gives

two points: Xd and Xd+1 day. The surprise in the state X associated with the announcement is

the change between these two points:

∆Xd = Xd+1 day − Xd.

Hence, ∆Xd represents the change in level, slope, and curvature of the term structure around

day-s announcement. Some announcement dates coincide with policy rate announcements

by the US Federal Reserve (they are both on Wednesdays), a strong confounder. I remove

these announcements from the sample, which leaves 85 data points.

Next, I separately regress each factor’s surprise series on policy rate surprises sd, without

1In fact, most papers measure monetary shocks in terms of their effect on the term structure - see for instance
the discussion of policy indicator vs policy instrument in Gertler and Karadi (2015).
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a constant term:

∆Xd = η sd + εd.

The estimated η̂ vector determines the average effect of annualized policy surprises on the

level, slope and curve of the term structure, given the announcement surprise. Table 4 reports

results. It shows that monetary surprises typically affect the slope of the term structure. A

0.1% surprise corresponds to a 0.072% increase in the slope factor, or 7.2% of its sample

standard deviation. The effects on the level and curve factors are negative, but imprecisely

estimated. The projected effect on the quarterly interest rate according to the affine model is

4 δ1 · η̂ × 0.1% ≈ 0.091%, which is not too far from the 0.1% surprise on the Selic rate.

Figure 10 plots the IRF of state Xt to the shock et=0 = η̂× 0.1%, a positive 0.1% surprise in

the central bank announcement, which I henceforth call a "monetary shock". The period of

the shock is period zero t = 0. I report the responses in standard deviation units to facilitate

interpretation in terms of term structure shapes (figure 2). For example: in the quarter of

the announcement, the slope of the term structure is 7.2% of one sample standard deviation

higher than usual.

When we calculate the IRF using the physical dynamics estimated by OLS w = 1, the

expected effect of a positive monetary shock is a protracted period of elevated term structure

slope. The level of the term structure grows, but not as much, and not in the period of the

announcement. The impact on the curvature is negative in the first two quarters, turns

positive, and then slowly fades along with the other two factors. The positive effect of the

monetary policy shock on the three factors is not surprising, since I normalize the principal

components that build Xt to be increasing in the interest rate. Such positive effect takes a

long time to fade: after the first two quarters, agents expect the three factors to stay above

average for the five years described by the plots.

Qualitatively, the shape of the IRF is similar when w = 0.5 or w = 0.01. But in accordance

with the higher-frequency property of the physical dynamics underscored by key point 2,

agents expect the three factors to revert the positive impact of the monetary shock more
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(a) w = 1 (OLS) (b) w = 0.5 (c) w = 0.01

Notes. One period = one quarter. The monetary shock corresponds to a 0.1% (annualized) surprise
(the average absolute surprise on policy rate announcements is 0.0585%). I divide the factors by 1% to

put them in standard deviation units.

Figure 10: Physical Dynamics: IRF to a Monetary Policy Shock

quickly. Additionally, the IRF cycles show more amplitude. The curve factor peaks at a higher

level, and, in the w = 0.01 case, the impact on the slope factor becomes negative after only

two years of transition. These effects combine to give the "S"-shape look to the IRFs.

How do we translate these level, slope and curve effects into expected interest and risk

premia effects?

Key Point 3: In response to a positive monetary policy shock:

1. The term structure of forward rates becomes more negatively inclined; the effect on its

level is positive, but not as large and not in the announcement period.

2. Two-year risk premia decline.

3. In the announcement period, term premia embedded in the term structure decline.

4. As we estimate physical dynamics giving more weight to risk-premium moments M3,

the positive effect of the shock on expected interest decays faster. For w = 0.5 and

w = 0.01, it lasts ten quarters.
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(a) Interest Rate and Term Structure (b) Term Premia at Shock Period t = 0

Notes. One period = one quarter. The monetary shock corresponds to a 0.1% (annualized) surprise
(the average absolute surprise on policy rate announcements is 0.0585%). The left figure plots the IRF
of interest rates (as a function of time) and the response of the term structure f n+1

t=0 at the shock period
t = 0. The difference between the two is the term premia at period t = 0, plotted on the right. The

vertical axis reports annualized percentage units.

Figure 11: Interest and Term Premia: Response to a Monetary Policy Shock

By the signs of the model-implied loadings of the return-forecasting regressions (table

3), the effects of the monetary shock η̂ on all three factors indicate a decline in long-term risk

premia. Indeed, the risk premium on a two-year holding of the five-year maturity bond

Etrx20
t,t+8 decreases in period zero. It falls by -0.15%, -0.10% and -0.127% in the cases w = 1,

w = 0.5 and w = 0.01, respectively. As expected, the case w = 0.01 best approximates the

-0.121% effect implied by our return-forecasting regression (9).

Figure 11 translates the state vector responses into a decomposition of the whole term

structure

f n
t = Etit+n−1 + tpn

t

in the shock period t = 0. The dark thick curve in panel 11a depicts the effect of the monetary

shock on f n+1
t=0 as a function of maturity n. The term structure becomes more negatively

inclined, consistent with the rise in Slopet. Short-term yields increase relative to long-term

ones. The other three curves correspond to the IRF of the interest rates as a function of time
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t + n, or the change in its expected path Etit+n. Regardless of w, agents expect the interest

rate to decline, but at a slower pace than that implied by the inclination of the term structure

in period zero. Consequently, the period-zero term premium tpn
t=0 (panel 11b) is negative, in

all w cases. A negative term premium is consistent with the decline in long-term risk premia,

and indicates that quarterly risk premia fall as well.1

The pace at which interest rate falls differs depending on w. In the w = 1 OLS model, the

it IRF resembles an AR(1) innovation: the initial positive effect slowly decays towards zero.

On the other hand, with w = 0.5 or w = 0.01, the effect of the monetary shock on interest

turns negative after exactly 10 quarters. The IRFs increasingly inherit the "S"-shape look from

the states’ IRFs. With w = 0.01, the affine model even suggests an expected further increase of

the interest rate in the first three quarters after the announcement. These models suggest a

much more temporary effect of monetary policy shocks. In terms of the decomposition of the

term structure at period zero, they agree with OLS on the sign of term premia innovations,

but the shapes are somewhat distinct, reflecting different risk premia and of course different

expected paths of the interest rate. In conclusion: the choice of which set of moments we give

more weight to in the GMM estimation - M2 or M3 - again affects the results we derive from

the affine model.

7. Conclusion

This paper studies the joint distribution of Brazilian interest yields and bond holding returns

using a multifactor version of the Gaussian affine model of the term structure (Dai and

Singleton (2000)). The affine model imposes restrictions that lead to a trade-off involving

which aspects of the model we can match to the evidence. I propose a new GMM procedure

tailored to deal with this trade-off. I focus on OLS and risk premium orthogonality conditions,

which have both been used in previous research to estimate the affine model, often leading to

1Equation (1) expresses the term premium as a function of one-period risk premia.
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conflicting conclusions. The GMM approach I present in this paper unifies these approaches

and allows us to analyze intermediary cases.

To estimate the model, I have shown an important empirical pattern of bond risk premia in

Brazil, not previously documented. At long investment horizons, such as two and three years,

expected excess returns have been driven by changes in the level of the terms structure far

more than its slope and curve. Straightforward OLS estimation of the physical dynamics of

the model fails to generate this pattern, which might not be ideal in many contexts, such as the

decomposition of the term structure. Indeed, I find that which set of orthogonality conditions

we privilege in the estimation leads to different conclusions about the decomposition of the

term structure and the effects of monetary policy shocks.
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(a) ... relative to actual prices (yields) (b) ... relative to OLS estimates (forward rates)

Notes. Panel 12a: RMSE against actual zero-coupon yields. Panel 12b: RMSE of forward rates in the
Gaussian and OLS models. All errors multiplied by four to annualize.

Figure 12: Root Mean Squared Pricing Error...

A. Pricing Errors

A.1. Actual Prices

I compare ANBIMA data and the estimated Gaussian model’s yields to actual price data.

I use LTN (Letra Financeira do Tesouro) yields. These are zero-coupon bonds issued by the

Brazilian government that always expire in the first business day of the months of January,

April, July and October. The set of available bonds does not provide a complete spam of

maturities, even if we consider only the months above and existence of coupon-paying ones.

This is why I use ANBIMA’s estimated term structure.

Given the quarterly model, I restrict the data sample to the first days of January, April, July

and October (or the next business day). That guarantees that the maturities of outstanding

bonds in any given time are a round number of quarters. For instance, on April 1st, a bond

maturing in July 1st of the same year has a maturity of one quarter. On May 15th, that same

bond would have a maturity of half a quarter, which I cannot price using the Gaussian model.

Therefore I drop these observations.
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The yield of the n-maturity bond is yn,t = −pn,t/n. Figure 12a plots the time series

of RMSE using the ANBIMA data (orange) and Gaussian model (blue). Each point is the

average across maturities. The averages across time and maturities are respectively 0.044%

and 0.21% (both rates annualized). The difference between these figures can be interpreted

as the constraints imposed by no-arbitrage - the Svenson model is not guaranteed not to

produce arbitrage opportunities (Bjork and Christensen (1999), Coroneo et al. (2011)).

A.2. OLS Model

I estimate the linear model

fn,t = an + b′nXt + ηt

for each maturity n separately by unrestricted ordinary least squares (OLS). Unrestricted

OLS errors provide a natural benchmark to linear models, as by construction OLS minimizes

squared errors. Figure 12b plots RMSE by maturity (that is, for each separate regression) in

orange. The blue markers correspond to the average error produced by the Gaussian model.

They correspond to the sample moment vector from the first-stage GMM moments conditions

(M1) (the g in the general formulation (13)). The average error (across time and maturities) is:

0.185% in the OLS regression and 0.202% in the Gaussian model. Both of these are annualized.

Figure (15) compares, in the same plot, forward rate data and model implied forward rates

for four different maturities.

B. Derivation of the Gaussian Affine Model

This section presents the details of the Gaussian exponential-affine model. The vector of

factors Xt evolves according to the law of motion (2) in the main text

Xt = µ + ΦXt−1 + et et ∼ N(0, Σ).
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The Gaussian shocks et give name to the model.

The one-period payoff of a bond with maturity n is the price of the same bond in the

following period, when it turns into n− 1 period bond. Bonds with maturity zero pay one

unit of currency. Given a stochastic discount factor Mt+1 for payoffs denominated in currency

units, the price of the zero-coupon bond is given by

Pn
t = EtMt+1Pn−1

t+1 , P0
t+1 = 1

or, taking logs and defining mt+1 = log Mt+1,

pn
t = log Et exp

{
mt+1 + pn−1

t+1

}
, p0

t+1 = 0.

Hence, a pricing theory amounts to picking mt+1. We can re-write the pricing condition above

in terms of excess returns:

0 = log Et exp
{

mt+1 + it + rxn
t,t+1

}
, rx1

t+1 = 0, (B.1)

where it = f 1
t , as defined in the main text.

Equation (B.1) holds for a general stochastic discount factor mt+1. The mt+1 used by the

Gaussian model is given by (3). Heteroskedasticity of mt+1 allows for time-varying prices of

risk, which is precisely what we need to reproduce time-varying risk premia as observed in

the data. Having the innovations to the discount factor come from a et+1 term rather than

Xt+1 is necessary to generate an affine solution.

When applying our particular choice of a discount factor to (3), we get the linear solution

to it given by (4) and

Etrxn
t,t+1 = −(1/2)vart(rxn

t,t+1) + covt(rxn
t,t+1, e′t+1)λt. (B.2)
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The covariance term represents the quantity of risk of each bond, or its "beta", which is why I

refer to λt as the market price of risk.1 Given the solution below, the conditional variance and

covariance terms in (B.2) are both time invariant, and we can thus drop the t subscripts. All

variation in the risk premium Etrxn
t,t+1 comes from λt.

Pricing condition (B.2) implies a solution for equilibrium prices linear in the factors, given

by (5). Coefficients An and Bn satisfy the well-known Riccati equations

An−1 − An + B′n−1µ− δ0 = −1
2

B′n−1ΣBn−1 + B′n−1Σλ0

B′n−1Φ− B′n − δ′1 = B′n−1Σλ1

(B.3)

which one can solve recursively, starting from A1 = −δ0 and B1 = −δ1. The terms on the

left-hand side of the (B.3) correspond to the constant and time-varying parts of Etrxn
t,t+1. The

terms on the right-hand side correspond to the covariance term Bn−1Σ multiplied by λt. The

main text defines υn = −1
2 B′n−1ΣBn−1.

If we subtract the right-hand side from both sides of the expressions in (B.3) and gather

terms, we arrive at

An−1 − An + B′n−1(µ− Σλ0)− δ0 = υn

B′n−1(Φ− Σλ1)− B′n − δ′1 = 0.
(B.4)

Hence, we can find the coefficients An and Bn without regard to market price of risk pa-

rameters λ0 and λ1, or the physical distribution µ, Φ, by searching instead for the terms

µ∗ = µ− Σλ0 Φ∗ = Φ− Σλ1 directly. Furthermore, if λt were zero, and thus we had a condi-

tionally deterministic discount factor, the bond prices would be observationally equivalent to

those in the model with risk, if the drift of Xt was determined by parameters µ∗ and Φ∗, instead

of µ and Φ. This is why I refer to distribution (7), which performs that change of drift, as

1In the beta representation traditionally used in the empirical finance literature, an asset’s beta is usu-
ally defined as the linear projection coefficient on the corresponding risk factor. Given the homoscedastic-
ity of the innovations in the model, the coefficients emerge by simply left-multiplying λt by Σ−1Σ. Then,
cov(rxn, e′)Σ−1 = cov(rxn, e′)E(ee′)−1 becomes the "usual" beta, and Σλt becomes the market price of risk.
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"risk-neutral".

Since log bond prices are linear in Xt, forward rates will also be linear, with f n
t = A f

n +

B f ′
n Xt. The relationship between forward rates and prices f n

t = pn−1
t − pn

t implies A f
n =

An−1 − An and B f
n = Bn−1 − Bn. When n = 1, A f

1 = δ0 and B f
1 = δ1.

The main text claims that, under the risk-neutral distribution, forward rates coincide with

expected interest (plus the Jensen term υn). We can prove that with sheer force, using the

risk-neutral version of the Riccati equations (B.4):

f n
t = A f

n + B f ′
n Xt

= υn + δ0 − B′n−1µ∗ + δ′1Φ∗n−1Xt

= υn + δ0 + δ′1

[
(I + Φ∗ + · · ·+ Φ∗n−1)µ∗ + Φ∗n−1Xt

]
= υn + δ0 + δ′1E∗t Xt+n−1

= υn + E∗t it+n−1.

A more elegant way to prove that equality is to write E∗t rxn
t,t+1 = υt, which is the real

meaning of (B.4). Replacing the definition of excess returns gives

pn
t = E∗t pn−1

t+1 − [it + υn] = −
n

∑
j=0

E∗t
[
it+j + υn−j

]

(the last equality follows from the fact that pn
t converges to zero in n). Finally, f n

t = pn−1
t − pn

t

gives f n
t = υn + E∗t it+n−1.

B.1. Interpretation of the Risk-Neutral Distribution

How do we interpret the different behavior of the state variables under the actual and risk-

neutral measures? In most economic models, "risk-neutral" measure is another name to

probability times marginal utility. By factoring in marginal utility, one can do asset pricing by

simply taking expectations of uncertain payoffs.
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More formally, we can price a payoff Y(et+1) using the stochastic discount factor directly:

Et [emt+1Y(et+1)]. Alternatively, as I show below, we can price it by computing the expected

payoff and discounting using the interest rate: e−it E∗t [Y(et+1)]. But E∗t changes the conditional

distribution of the shock vector et+1 by centering it around −Σλt (instead of zero). The re-

definition of µ and Ψ in (7) leads to this change of conditional mean. By the pricing condition

(6), the inequality λt,p < 0 means that et+1,p is a "bad" shock: investors pay a premium for

payoffs that provide insurance by correlating positively with it. Correspondingly, if the p-th

element of −Σλt is positive, the risk-neutral distribution centers et+1,p around a positive

value.1 In conclusion, we can price payoff Y(et+1) by simply computing its expected value if

we make "bad" occurrences of et+1 "more likely" under the probability density applied by the

expectation operator. The altered law of motion for model factors (7) accomplishes that.

The exponential-affine model offers a lot of tractability to see the point algebraically. In a

given period t + 1, both the actual shock et+1 and the artificial risk-neutral "shock" e∗t+1 are

Gaussian with the same covariance matrix Σ. Their probability density functions therefore

have the same normalizing constantM; only their exponential kernel differ. Hence, we can

factor in the discount factor mt+1 by changing such exponential kernel and put into evidence

the density function of the risk-neutral measure:

1 = Et [emt+1Yt+1(et+1)] =M
∫

exp{−(1/2)e′Σ−1e} exp{−it − λ′tΣλt − λte}Yt+1(e)de

=M
∫

exp{−(1/2)(e− φt)
′Σ−1(e− φt)} exp{−it}Yt+1(e)de.

So, risk-neutral pricing here simply amounts to taking expected value of returns "as if" shocks

et+1 had a conditional mean equal to φt. The last equality then implies

φt = −Σλt,

and all we need now is to interpret φt. To that end, suppose period t + 1 comes and we

1We multiply λt by Σ to account for shock correlation.
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observe et+1 = φt. State variables will then be given by

Xt+1 = ΦXt + φt = ΦXt − Σλt = µ∗ + Φ∗Xt.

We have thus a link between the estimated risk-neutral dynamics - to which the IRFs above

give a useful interpretation - and the discount factor m. What the equation above tells us is

that the discount factor, or marginal utility, places elevated weight on combinations of shocks (≈ φt)

that lead our states X to present the risk-neutral dynamics (µ∗, Φ∗).

B.2. Decomposition of Excess Returns over Long Horizons

The text makes the claim that we can decompose excess returns on horizons longer than one

quarter between multiple one-period excess returns (equation (15)). I verify this claim now.

I start with the observation that the term premium is a combination of expected excess

returns, as indicated by (1):

tpn
t = Et

(
rxn

t,t+1 − rxn−1
t,t+1

)
+ Et

(
rxn−1

t+1,t+2 − rxn−2
t+1,t+2

)
+ · · ·+ Etrx2

t+n−2,t+n−1

=
n−1

∑
j=1

Etrxn−j+1
t+j−1,t+j − Etrxn−j

t+j−1,t+j

Cochrane and Piazzesi (2009) demonstrate the equality above graphically. In the case n = 2

we get tp2
t = Etrx2

t+1, which gives the pretty expression f 2
t = Etit+1 + Etrx2

t+1.

Returns over horizons longer than one quarter can be decomposed between individual

one-period excess returns and term premia that adjust for the difference between future

interest (which enter the definition of these one-period returns) and current forward rates
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(which enter the definition of the long-horizon return). The algebra:

rxn
t,t+m = pn−m

t+m − pn
t −

[
it + f 2

t + · · ·+ f m
t

]
= [pn−m

t+m − pn−m+1
t+m−1 − it+m−1]− ( f m

t − it+m−1)

+ [pn−m+1
t+m−1 − pn−m+2

t+m−2 − it+m−2]− ( f m−1
t − it+m−2)

+ · · ·+

+ [pn−1
t+1 − pn

t − it]

I use colored text to highlight variables that I add and subtract. When we take expectations,

terms in brackets become one-period risk premia; terms in parentheses become term premia:

Etrxn
t,t+m =

[
Etrxn−m+1

t+m−1,t+m + Etrxn−m+2
t+m−2,t+m−1 + · · ·+ Etrxn

t,t+1

]
−
(

tpm
t + tpm−1

t + · · ·+ tp2
t

)

We have shown that the term premia terms tp are the sum of one-period risk premia. The

expression above therefore proves that the same is true for risk premia over horizons of more

than a period. Replacing the expression for term premia, we get equation (15).
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Notes. The x-axis represents time.

Figure 13: Model Factors (Time Series)

Notes. The x-axis represents maturity in quarters. The eigenvectors represent the OLS loadings of
forward rates on each (unnormalized) factor, and the combination of forward rates that builds each

factor.

Figure 14: Principal Components’ Eigenvectors
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Notes. The x-axis represents time.

Figure 15: Forward Rates - Data and Model Pricing
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(a) Level shock (b) Slope shock (c) Curve shock

Notes. One period = one quarter. Top: factors Xt. Middle: interest rate it, forward rate at period zero
f n
t=0, and the term premia tpn

t=0 (both as functions of maturity n). Bottom: risk premium on 2-year
holdings of five-year bonds Etrx20

t,t+8 (also, the risk premium implied by the unrestricted
return-forecasting regression (9)).

Figure 16: Risk-Neutral Dynamics: Impulse Response Functions
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(a) Response to a Level Shock

(b) Response to a Slope Shock

(c) Response to a Curve Shock

Notes. Each of the nine plots contains three IRFs. The dashed line corresponds to the
solution to the GMM problem using w = 1 (which coincides with straight OLS estimation of

(2)). The blue corresponds to w = 5 (baseline), and the orange to w = 0.01. Parameter w
governs the weight of OLS moments (M2) relative risk-premium moments (M3).

Figure 17: Physical Distribution: Comparison between IRFs with different w
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